Álgebra Lineal I: Problemas de transpuesta de matriz y matrices de bloque

Por Ayax Calderón

Introducción

En esta entrada ejercitaremos los conceptos de matriz transpuesta y matriz de bloque mediante ejercicios resueltos. Además, para los últimos tres problemas definiremos un concepto que aunque no se estudia a fondo en este curso, aparece en muchas áreas de las matemáticas y de la física: el de producto tensorial.

Problemas resueltos

Problema 1. Sea $A\in M_n(\mathbb{R}$) una matriz con una única entrada distinta de cero en cada renglón y columna, dicha entrada es igual a $1$ ó $-1$. Demuestra que $A$ es una matriz ortogonal.

Solución. Sea $A=[a_{ij}]$. Queremos ver que $A^{-1}=$ $^tA $. Sean $i,j\in \{1, 2, \dots , n\}$. Entonces la entrada $(i,j)$-ésima de $A \ ^t A$ es

\begin{align*}
(A\ {^tA})_{ij}=\displaystyle\sum_{k=1}^na_{ik}a_{jk}.
\end{align*}

Supongamos que $a_{ik}a_{jk}$ es distinto de cero para algún $k\in \{1,2,\dots n\}$, por tanto $a_{ik}$ y $a_{jk}$ son distintos de cero.
Si sucediera que $i\neq j$, entonces $A$ tiene al menos dos entradas distintas de cero en la columna $k$, pero esto es imposible. Así, si $i\neq j$, entonces $a_{ik}a_{jk}=0$ para todo $k\in\{1,2,\dots n\}$ y por consiguiente la $(i,j)-$ésima entrada de $A\ ^tA$ es 0.

Por otro lado, si $i=j$, entonces
\begin{align*}
(A\ ^tA)_{ij}=\displaystyle\sum_{k=1}^na_{ik}^2.
\end{align*}

Como por hipótesis se tiene que todas las entradas del $i$-ésimo renglón de $A$ son todas $0$ salvo una que es $1$ ó $-1$, entonces $\displaystyle\sum_{k=1}^na_{ik}^2=1$ y así $(A\ ^tA)_{ij}=1$ cuando $i=j$. Concluimos que $A\ ^tA=I_n$.
Mediante un argumento análogo se ve que $^tA A = I_n.$

$\square$

Problema 2. a) Sea $A\in M_n(\mathbb{R})$ una matriz tal que $^tA \cdot A =O_n$. Demuestra que $A=O_n$.
b) ¿El inciso a) seguirá siendo cierto si reemplazamos $\mathbb{R}$ por $\mathbb{C}$?

Solución. a) Sea $A=[A_{ij}]$. Por la regla del producto de matrices se tiene que la $(i,i)$-ésima entrada de $^tA\cdot A$ es

\begin{align*}
(^tA\cdot A )_{ii} &= \displaystyle\sum_{k=1}^n (^tA)_{ik}A_{ki} \\ &=
\displaystyle\sum_{k=1}^n A_{ki}^2.
\end{align*}

Como $^tA\cdot A=O_n$, concluimos que para toda $i\in\{1,2,\dots,n\}$ se tiene que

\begin{align*}
\displaystyle\sum_{k=1}^n A_{ki}^2=0.
\end{align*}

Como cada $A_{ki}$ es un número real, al elevarlo al cuadrado obtenemos números no negativos. De lo anterior se sigue que $A_{ki}=0$ para toda $k\in \{1,2\dots ,n\}$. Como la $i$ fue tomada de manera arbitraria, concluimos que $A=O_n.$
b) El resultado no necesariamente es cierto si cambiamos el campo de los reales por el campo de los complejos. Busquemos una matriz simétrica $A\in M_2(\mathbb{C})$ tal que $^tA\cdot A= O_2$, pero como $A$ es simétrica, lo anterior solamente es $A^2=O_2$ y además se puede escribir como

\begin{align*}
A=\begin{pmatrix}
a & b\\
b & d\end{pmatrix}
\end{align*}

para algunos números complejos $a,b$ y $d$. Ahora

\begin{align*}
A^2 &= \begin{pmatrix}
a & b\\
b & d\end{pmatrix} \cdot \begin{pmatrix}
a & b\\
b & d\end{pmatrix} \\
&=\begin{pmatrix}
a^2 +b^2 & b(a+d)\\
b(a+d) & b^2+ d^2\end{pmatrix}.
\end{align*}

Así que buscamos números complejos $a,b,d$ con al menos uno de ellos distinto de cero y tales que

\begin{align*}
a^2+b^2=0, \hspace{2mm} b(a+d)=0, \hspace{2mm} b^2+d^2=0.
\end{align*}

Basta con asegurar que $a+d=0$ y $a^2+b^2=0$, para lo cual tomamos $a=i, b=1, d=-i$ .

$\square$

Producto tensorial

A continuación definiremos el producto tensorial. Es importante mencionar que esto es meramente para ejemplificar la teoría que se ha visto hasta ahora, por lo que no se profundizará en este tema.

Si $A=[a_{ij}]\in M_{m_1,n_1}(F)$ y $B\in M_{m_2,n_2}(F)$ son matrices, entonces definimos el producto de Kronecker o producto tensorial de $A$ y $B$ como la matriz de bloque $A\otimes B\in M_{m_1m_2,n_1n_2}(F)$ definida por

\begin{align*}
A\otimes B = \begin{pmatrix}
a_{11}B & a_{12}B & \dots & a_{1,n_1}B\\
a_{21}B & a_{22}B & \dots & a_{2,n_1}B\\
\vdots & \vdots & \vdots & \vdots\\
a_{m_1,1}B & a_{m_1,2}B & \dots & a_{m_1,n_1}B \end{pmatrix}.
\end{align*}

Problema 1. Calcula el producto tensorial de las matrices

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}, \hspace{4mm} B=\begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}.
\end{align*}

Solución. Usamos directamente la definición de producto tensorial

\begin{align*}
A\otimes B=\begin{pmatrix}
0 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 1 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}\\
1\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0 \cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}\\
0\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 0\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix} & 1\cdot \begin{pmatrix}
2 & 1\\
1 & -1\end{pmatrix}
\end{pmatrix}
\end{align*}

\begin{align*}
= \begin{pmatrix}
0 & 0 & 2 & 1 & 0 & 0\\
0 & 0 & 1 & -1 & 0 & 0\\
2 & 1 & 0 & 0 & 0 & 0\\
1 & -1 & 0 & 0 & 0 & 0\\
0 & 0 & 0 & 0 & 2 & 1\\
0 & 0 & 0 & 0 & 1 & -1\end{pmatrix}
\end{align*}

$\triangle$

Problema 2. ¿El producto tensorial es conmutativo?

Solución. En general, el producto tensorial, no es conmutativo. Sean $A$ y $B$ como en el problema anterior. Entonces

\begin{align*}
B\otimes A = \begin{pmatrix}
2\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix} & 1\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}\\
1\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix} & -1\cdot \begin{pmatrix}
0 & 1 & 0\\
1 & 0 & 0\\
0 & 0 & 1\end{pmatrix}
\end{pmatrix}
\end{align*}

\begin{align*}
=\begin{pmatrix}
0 & 2 & 0 & 0 & 1 & 0\\
2 & 0 & 0 & 1 & 0 & 0\\
0 & 0 & 2 & 0 & 0 & 1\\
0 & 1 & 0 & 0 & -1 & 0\\
1 & 0 & 0 & -1 & 0 & 0\\
0 & 0 & 1 & 0 & 0 & -1\end{pmatrix}.
\end{align*}

Comparando con lo obtenido en el problema anterior, ser verifica que el producto tensorial no es conmutativo.

$\triangle$

Problema 3. Verifica que $I_m\otimes I_n = I_{mn}.$

Solución. Por definición sabemos que $I_m\otimes I_n\in M_{mn}(F)$. Ahora veamos que

\begin{align*}
\begin{pmatrix}
1\cdot I_n & 0\cdot I_n & \dots & 0\cdot I_n\\
0\cdot I_n & 1 \cdot I_n & \dots & 0\cdot I_n\\
\vdots & \vdots &\ddots & \vdots\\
0\cdot I_n & 0\cdot I_n & \dots & 1\cdot I_n\end{pmatrix}
= I_{mn}.
\end{align*}

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

4 comentarios en “Álgebra Lineal I: Problemas de transpuesta de matriz y matrices de bloque

  1. Nano

    Hola, buenas tardes.
    Disculpe, en el segundo problema se dice que A es una matriz de m x n, y se define como A=[A_{i,j}], mi pregunta es si A es una matriz de bloques o tendría que sea A=[a_{i,j}].
    Gracias.

    Responder
  2. Pablo

    Hola Leo,
    Creo que en el primer problema hay un error.
    Creo que en el primer sumatorio los índices se corresponden con A por A traspuesta, y no a A traspuesta por A.
    Gracias por tu blog, es estupendo.

    Responder
    1. Leonardo Ignacio Martínez SandovalLeo

      Hola Pablo. En efecto corresponden a $A$ por $A$ transpuesta. Pero observa que en nuestras notas la «transposición» va a la izquierda de la matriz, es decir, usamos la notación $^t A$ para la transpuesta de $A$. Entonces, sí es la expresión que está ahí. Se que esa notación es un poco rara, pero tiene que ver con la bibliografía en la que nos basamos. Gracias por el comentario.

      Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.