Archivo de la etiqueta: transformaciones lineales

Álgebra Lineal I: Aplicaciones del teorema espectral, bases ortogonales y más propiedades de transformaciones lineales

Introducción

Hoy es la última clase del curso. Ha sido un semestre difícil para todas y todos. El quedarnos en casa, obligados a buscar alternativas digitales que sean de fácil acceso para la mayoría de las personas, aprender a realizar toda nuestra rutina diaria en un mismo espacio; sin dudarlo, un semestre lleno de retos que de una u otra manera, haciendo prueba y error, hemos aprendido a sobrellevar.

El día de hoy terminaremos con el tema de teoría espectral. Veremos algunos problemas donde usaremos las técnicas de búsqueda de eigenvalores y eigenvectores, así como aplicaciones de uno de los teoremas más importante: el Teorema Espectral.

Matrices simétricas, matrices diagonalizables

En entradas anteriores hemos discutido sobre qué condiciones me garantizan que una matriz A es diagonalizable. No volveremos a repetir cuál es la definición de matriz diagonalizable ya que en múltiples ocasiones lo hicimos.

Sabemos que una matriz simétrica en M_n(\mathbb{R}) siempre es diagonalizable, gracias al teorema espectral, pero el siguiente problema nos ilustra que si cambiamos de campo F, no tenemos la garantía de que las matrices simétricas en M_n(F) también lo sean.

Problema. Demuestra que la matriz simétrica con coeficientes complejos

A=\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}

no es diagonalizable.

Solución. Por la primera proposición de la clase «Eigenvalores y eigenvectores de transformaciones y matrices», si A fuese diagonalizable, es decir, que existe una matriz invertible P y una diagonal D tal que A=P^{-1}DP, entonces A y D tienen los mismos eigenvalores. Entonces, encontremos los eigenvalores de A: buscamos \lambda \in \mathbb{C} tal que \text{det}(\lambda I-A)=0,

    \begin{align*}\text{det}(\lambda I-A)&=\begin{vmatrix} \lambda -1 & -i \\ i & \lambda +1 \end{vmatrix} \\&=(\lambda-1)(\lambda+1)-i^2=\lambda^2 -1+1 \\&=\lambda^2=0.\end{align*}

Por lo tanto, el eigenvalor con multiplicidad 2 de A (y también el eigenvalor de D) es \lambda =0. Si D es de la forma

D=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix},

es fácil ver (y calcular) que sus eigenvalores son a y b, pero por lo anterior, podemos concluir que a=b=0, y por lo tanto D es la matriz cero. Si fuese así, A=P^{-1}DP=0, contradiciendo la definición de A.

\square

Problema. Sea A una matriz simétrica con entradas reales y supongamos que A^k=I para algún entero positivo k. Prueba que A^2=I.

Solución. Dado que A es simétrica y con entradas reales, todos sus eigenvalores son reales. Más aún son k-raíces de la unidad, entonces deben ser \pm 1. Esto implica que todos los eigenvalores de A^2 son iguales a 1. Dado que A^2 también es simétrica, es diagonalizable y, dado que sus eigenvalores son iguales a 1, por lo tanto A^2=I.

\square

Más propiedades de transformaciones lineales y bases ortogonales

En otras clases como Cálculo, Análisis, hablamos de funciones continuas, discontinuas, acotadas, divergentes; mientras que en este curso nos hemos enfocado únicamente en la propiedad de linealidad de las transformaciones. Si bien no es interés de este curso, podemos adelantar que, bajo ciertas condiciones del espacio V, podemos tener una equivalencia entre continuidad y acotamiento de una transformación.

Decimos que la norma de una transformación está definida como

\norm{T}=\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}.

Por ende, decimos que una transformación es acotada si su norma es acotada, \norm{T}<\infty.

Problema. Sea V un espacio euclideano y sea T una transformación lineal simétrica en V. Sean \lambda_1,\ldots,\lambda_n los eigenvalores de T. Prueba que

\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}} =\max_{1\leq i\leq n} |\lambda_i|.

Solución. Renumerando a los eigenvalores, podemos decir que \max_i |\lambda_i|=|\lambda_n|. Sea e_1,\ldots,e_n una base ortonormal de V tal que T(e_i)=\lambda_i e_i para todo i. Si x\in V\setminus {0}, podemos escribirlo como x=x_1e_1+\ldots+x_n e_n para algunos reales x_i. Entonces, por linealidad de T,

T(x)=\sum_{i=1}^n \lambda_i x_ie_i.

Dado que |\lambda_i|\leq |\lambda_n| para toda i, tenemos que

\frac{\norm{T(x)}}{\norm{x}}=\sqrt{\frac{\sum_{i=1}^n \lambda_i^2 x_i^2}{\sum_{i=1}^n x_i^2}}\leq |\lambda_n|,

por lo tanto

    \begin{align*} \max_{1\leq i\leq n} |\lambda_i|&=|\lambda_n|=\frac{\norm{T(e_n)}}{\norm{e_n}}\\&\leq \sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}\\ &\leq |\lambda_n|= \max_{1\leq i\leq n} |\lambda_i|. \end{align*}

Obteniendo lo que queremos.

\square

Para finalizar, no olvidemos que una matriz es diagonalizable si y sólo si el espacio tiene una base de eigenvectores, y que está íntimamente relacionado con el teorema espectral.

Problema. Encuentra una base ortogonal consistente con los eigenvectores de la matriz

A=\frac{1}{7}\begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}.

Solución. Para encontrar los eigenvectores, primero encontrar los eigenvalores y, después, para cada eigenvalor, encontrar el/los eigenvectores correspondientes.

Calculemos:

    \begin{align*}0&=\text{det}(\lambda I-A)=\begin{vmatrix} \lambda+2/7 & -6/7 & 3/7 \\ -6/7 & \lambda-3/7 & -2/7 \\ 3/7 & -2/7 & \lambda-6/7 \end{vmatrix} \\&= \lambda^3-\lambda^2-\lambda+1 \\&= (\lambda -1)(\lambda^2 -1),\end{align*}

entonces los eigenvalores de A son 1,-1, (\lambda=1 tiene multiplicidad 2).

Ahora, hay que encontrar los vectores v=(x,y,z) tal que Av=\lambda v, para todo eigenvalor \lambda.

Si \lambda=-1,

(\lambda I-A)v=\frac{1}{7}\begin{pmatrix} -5 & -6 & 3 \\ -6 & -10 & -2 \\ 3 & -2 & -13 \end{pmatrix}v=0,

reduciendo, obtenemos que v=(3\alpha, -2\alpha, \alpha) para todo \alpha\in \mathbb{R}.

Si \lambda=1, resolviendo de la misma manera (\lambda I-A)v=(I-A)v=0, tenemos que v=(\beta,\gamma,-3\beta+2\gamma) para todo \beta,\gamma. Entonces el conjunto de eigenvectores es

B=\{ v_1=(3,-2,1), \quad v_2=(1,0,-3), \quad v_3=(0,1,2) \}.

Es fácil ver que el conjunto B es linealmente independiente, más aún \text{dim}(\mathbb{R}^3)=3=|B|, por lo tanto, B es la base consistente con los eigenvectores de A.

\square

Agradecemos su esfuerzo por llegar hasta el final a pesar de todas las adversidades. Esperamos pronto volver a ser sus profesores/ayudantes. Mucha suerte en la última parcial, es el último esfuerzo. Pero también les deseamos mucho éxito en su proyecto de vida. ¡Gracias!

Álgebra Lineal I: Eigenvalores y eigenvectores de transformaciones y matrices

Introducción

En entradas anteriores ya establecimos los fundamentos para hablar de determinantes. Dimos su definición para el caso de vectores y el caso de matrices/transformaciones lineales. Enunciamos y demostramos varias de sus propiedades. Luego dedicamos toda una entrada a ver formas de calcularlos. Finalmente, vimos que nos pueden ayudar para entender mucho mejor a los sistemas de ecuaciones lineales. Entender bien estos conceptos te será de gran utilidad en tu formación matemática.

Además, los determinantes son un paso natural en uno de nuestros objetivos del curso: entender por qué las matrices simétricas reales son diagonalizables. Recuerda que una matriz A en M_n(F) es diagonalizable si existe una matriz diagonal D y una matriz invertible P, ambas en M_n(F), de modo que

    \[A=P^{-1}DP.\]

Lo que haremos en esta entrada es hablar de esos valores que aparecen en la matriz diagonal D en el caso de que A sea diagonalizable. Resulta que estos valores están relacionados con una pregunta muy natural en términos de lo que le hace la matriz a ciertos vectores. Y mejor aún, como veremos, hay un método para encontrar estos valores por medio de un determinante. Vamos poco a poco.

Eigenvalores y eigenvectores para transformaciones lineales

Sea V un espacio vectorial sobre un campo F y sea T:V\to V una transformación lineal. Para fijar ideas, pensemos en \mathbb{R}^n por el momento. A veces, T simplemente la cambia la magnitud a un vector, sin cambiarle la dirección. Es decir, hay algunos vectores para los cuales T se comporta simplemente como la multiplicación por un escalar. En símbolos, hay vectores v tales que existe un valor \lambda tal que T(v)=\lambda v.

Por supuesto, al vector 0 siempre le pasa esto, pues como T es lineal, se tiene que T(0)=0=\lambda\cdot 0 para cualquier escalar \lambda. Resulta que cuando se estudian estos vectores y escalares especiales, lo más conveniente es quitar al vector 0 de la discusión. Estas ideas llevan a la siguiente definición.

Definición. Un eigenvalor de una transformación lineal T:V\to V es un escalar \lambda tal que \lambda \text{id} - T no es invertible. En otras palabras, \lambda es un escalar tal que existe un vector no cero en el kernel de \lambda \text{id} - T. A un vector v\neq 0 en V tal que

    \[(\lambda \text{id} - T)v=0,\]

se le conoce como un eigenvector de T.

En otras palabras, v es un eigenvector correspondiente a T si v no es cero y T(v)=\lambda v. A los eigenvalores y eigenvectores de T también se les conoce en la bibliografía como valores propios y vectores propios de T.

Observa que si al conjunto de eigenvectores para un eigenvalor \lambda le agregamos el vector 0, entonces obtenemos el kernel de una transformación lineal, que sabemos que es un subespacio vectorial.

Veamos un par de ejemplos para que queden más claras las ideas.

Ejemplo. Consideremos a la transformación lineal T:\mathbb{R}^3\to \mathbb{R}^3 dada por

    \[T(x,y,z)=(-2x+15y+18z,3y+10z,z).\]

Observa que

    \begin{align*}T(1,0,0)&=(-2,0,0)\\&=-2(1,0,0),\end{align*}

que

    \begin{align*}T(-19,-5,1)&=((-2)(-19)+15(-5)+18,3(-5)+10, 1)\\&=(28+75-18,-15+10,1)\\&=(-19,-5,1),\end{align*}

y que

    \begin{align*}T(3,1,0)&=(-6+15,3,0)\\&=(9,3,0)\\&=3(3,1,0).\end{align*}

Estas igualdades muestran que (1,0,0) es un eigenvector de T con eigenvalor -2, que (-19,-5,1) es un eigenvector de T con eigenvalor 1 y (3,1,0) es un eigenvector de T con eigenvalor 3.

\square

Ejemplo. Consideremos al espacio vectorial \mathbb{R}[x] de polinomios con coeficientes reales. Tomemos la transformación lineal T que manda a un polinomio a su segunda derivada. ¿Quiénes son los eigenvalores y eigenvectores de T?

Para que p sea un eigenvector con eigenvalor \lambda, tiene que suceder que

    \[p''=T(p)=\lambda p.\]

Como p no es el vector cero, tiene un cierto grado. Si \lambda \neq 0, entonces la igualdad anterior no puede suceder, pues si p es de grado mayor o igual a 2, entonces el grado de p'' es menor al de \lambda p, y si el grado de p es 0 ó 1, su segunda derivada es 0, y no puede pasar \lambda p = 0. Así, el único eigenvalor que puede tener T es \lambda = 0. Observa que sí es válido que los eigenvalores sean cero (los eigenvectores no).

Cuando \lambda = 0, tiene que pasar que p'' sea 0\cdot p, es decir, el polinomio cero. Los únicos polinomios tales que su derivada es cero son los constantes y los lineales. Pero el polinomio cero por definición no es eigenvector.

Así, la respuesta final es que el único eigenvalor de T es 0, y sus eigenvectores correspondientes son los polinomios constantes distintos de cero, y los polinomios lineales.

\square

Eigenvalores y eigenvectores para matrices

Tenemos una definición similar para matrices. Sea A una matriz en M_n(F).

Definición. Un escalar \lambda en F es un eigenvalor de A si la matriz \lambda I_n - A no es invertible. En otras palabras, si existe un vector no cero X en F^n tal que AX=\lambda X. A un tal vector X se le conoce como un eigenvector correspondiente al eigenvalor \lambda.

En otras palabras, los eigenvalores y eigenvectores de A son exactamente los eigenvalores y eigenvectores de la transformación T_A:\mathbb{F}^n\to \mathbb{F}^n dada por T_A(v)=Av.

Además, si elegimos cualquier base B de un espacio de dimensión finita V y A es la matriz de T con respecto a la base B, entonces para cualquier escalar \lambda se tiene que \lambda I_n - A es la matriz de \lambda \text{id} - T con respecto a esta misma base. De aquí se deduce que los eigenvalores de T son los mismos que los eigenvalores de A. Dos matrices que representan a T difieren sólo en un cambio de base, así que obtenemos el siguiente resultado fundamental.

Proposición. Si A es una matriz en M_n(F) y P es una matriz invertible, entonces A y P^{-1}AP tienen los mismos eigenvalores. En otras palabras, matrices similares tienen los mismos eigenvalores.

En el primer ejemplo tomamos la transformación lineal T:\mathbb{R}^3\to \mathbb{R}^3 tal que

    \[T(x,y,z)=(-2x+15y+18z,3y+10z,z).\]

Su matriz en la base canónica de \mathbb{R}^3 es

    \[A=\begin{pmatrix} -2 & 15 & 18\\ 0 & 3 & 10\\ 0 & 0 & 1 \end{pmatrix}.\]

En el ejemplo vimos que los eigenvalores eran -2, 1 y 3, que precisamente conciden con las entradas en la diagonal de A. Esto no es casualidad. El siguiente resultado muestra esto, y es una primer evidencia de la importancia de los determinantes para encontrar los eigenvalores de una matriz.

Proposición. Si A es una matriz triangular (superior o inferior) en M_n(F), entonces sus eigenvalores son exactamente las entradas en su diagonal principal.

Demostración. Haremos el caso para cuando A es triangular superior. El otro caso queda de tarea moral.

Queremos encontrar los valores \lambda para los cuales la matriz \lambda I_n - A no sea invertible. La matriz A es triangular superior, así que la matriz \lambda I_n - A también, pues las entradas de A se vuelven negativas, y luego sólo se altera la diagonal principal.

Si las entradas diagonales de A son a_{11},\ldots,a_{nn}, entonces las entradas diagonales de \lambda I_n -A son

    \[\lambda - a_{11},\ldots,\lambda-a_{nn}.\]

La matriz \lambda I_n - A no es invertible si y sólo si su determinante es igual a cero. Como es una matriz triangular superior, su determinante es el producto de sus entradas diagonales, es decir,

    \[\det(\lambda I_n - A) = (\lambda - a_{11})\cdot\ldots\cdot(\lambda - a_{nn}).\]

Este producto es 0 si y sólo si \lambda es igual a alguna entrada a_{ii}. De esta forma, los únicos eigenvalores de A son las entradas en su diagonal.

\square

Si A es una matriz diagonalizable, entonces es semejante a una matriz diagonal D. Por la proposición anterior, los eigenvalores de A serían entonces las entradas en la diagonal principal de D. Esto nos da una intuición muy importante: si acaso pudiéramos encontrar todos los eigenvalores de A, entonces eso podría ser un paso parcial hacia diagonalizarla.

Encontrar eigenvalores es encontrar las raíces de un polinomio

La siguiente proposición conecta eigenvalores, polinomios y determinantes.

Proposición. Sea A una matriz en M_n(F). Entonces la expresión

    \[\det(\lambda I_n - A)\]

está en F[\lambda], es decir, es un polinomio en la variable \lambda con coeficientes en F. Además, es de grado exactamente n.

Demostración. La fórmula para el determinante

    \begin{align*}\begin{vmatrix}\lambda - a_{11} & -a_{12} & \ldots & -a_{1n}\\-a_{21} & \lambda - a_{22} & \ldots & -a_{1n}\\\vdots & & \ddots & \\-a_{n1} & -a_{n2} & \ldots & \lambda - a_{nn}\end{vmatrix}\end{align*}

en términos de permutaciones nos dice que el determinante es sumas de productos de entradas de A. Cada una de las entradas es un polinomio en F[\lambda], ya sea constante, o lineal. Como F[\lambda] es cerrado bajo sumas y productos, esto prueba la primer parte de la afirmación.

Para probar que el grado es exactamente n, notemos que cada sumando de la expresión multiplica exactamente n entradas. Como las entradas a lo mucho son de grado uno en F[\lambda], entonces cada sumando es un polinomio de grado a lo más n. Hay una única forma que el grado sea n: cuando se elige la permutación identidad y entonces se obtiene el sumando

    \[(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).\]

Esto termina la prueba.

\square

La proposición anterior nos asegura entonces que la siguiente definición tiene sentido.

Definición. Para A una matriz en M_n(F), el polinomio característico de A es el polinomio \chi_A(\lambda) en F[\lambda] dado por

    \[\chi_A(\lambda) = \det(\lambda I_n - A).\]

De esta forma, \lambda es un eigenvalor de A si y sólo si es una raíz del polinomio \chi_A(\lambda). Esto son buenas y malas noticias. Por un lado, nos cambia un problema de álgebra lineal a uno de polinomios, en donde a veces tenemos herramientas algebraicas que nos ayudan a encontrar raíces. Sin embargo, como se ve en cursos anteriores, también hay otros polinomios para los cuales es muy difícil encontrar sus raíces de manera exacta. Lo que salva un poco esa situación es que sí existen métodos para aproximar raíces numéricamente de manera computacional.

A pesar de la dificultad de encontrar raíces, sin duda tenemos consecuencias interesantes de esta conexión. Consideremos como ejemplo el siguiente resultado.

Proposición. Una matriz A en M_n(F) tiene a lo más n eigenvalores distintos. Lo mismo es cierto para una transformación lineal T:V\to V para V un espacio vectorial de dimensión n.

Demostración. La matriz A tiene tantos eigenvalores como raíces en F tiene su polinomio característico. Como el polinomio característico es de grado exactamente n, tiene a lo más n raíces en F.

La parte de transformaciones queda de tarea moral.

\square

Ya que encontramos los eigenvalores de una matriz o transformación, es posible que queramos encontrar uno o más eigenvectores correspondientes a ese eigenvalor. Observa que eso corresponde a encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo de la forma

    \[(I_n-A) X = 0.\]

Para ello ya tenemos muchas herramientas, como hacer reducción Gaussiana.

Terminamos esta entrada con un ejemplo de cómo encontrar los valores propios y vectores propios en un caso concreto.

Problema. Encuentra los eigenvalores de la matriz

    \[A=\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\]

considerándola como:

  • Una matriz en M_3(\mathbb{R})
  • Una matriz en M_3(\mathbb{C}).

En el caso de M_n(\mathbb{R}), encuentra un eigenvector para cada eigenvalor.

Solución. Para encontrar los eigenvalores, tenemos que encontrar el determinante

    \[\begin{vmatrix}\lambda - 1 & 0 & 0\\ 0 & \lambda & 1 \\ 0 & -1 & \lambda \end{vmatrix}.\]

Usando expansión de Laplace en la primer columna y haciendo las operaciones, obtenemos que el determinante de \lambda I_3 - A es el polinomio

    \[(\lambda-1)(\lambda^2+1).\]

Aquí es importante la distinción de saber en qué campo estamos trabajando. Si estamos en M_3(\mathbb{R}), la única raíz del polinomio es 1. Si estamos en M_3(\mathbb{C}), obtenemos otras dos raíces: i y -i.

Ahora, para cuando A es matriz en M_3(\mathbb{R}), necesitamos encontrar un eigenvector para el eigenvalor 1. Esto equivale a encontrar una solución al sistema de ecuaciones

    \[(I_3-A)X=0,\]

es decir, a

    \[\begin{pmatrix}0 & 0 & 0\\ 0 & 1 & 1 \\ 0 & -1 & 1\end{pmatrix}X=0.\]

Una solución para este sistema es X=(1,0,0). Y en efecto, (1,0,0) es eigenvector de A para el eigenvalor 1 pues no es el vector cero y

    \[\begin{pmatrix}1 & 0 & 0\\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 + 0 + 0 \\ 0 + 0 + 0 \\ 0 + 0 + 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.\]

\square

Observa que la matriz anterior no es diagonalizable en M_n(\mathbb{R}), pues si lo fuera tendría que ser semejante a una matriz diagonal D con entradas i y -i en la diagonal, pero entonces D no sería una matriz en M_n(\mathbb{R}). Esto nos da otra intuición con respecto a la diagonalización de una matriz: si acaso una matriz en M_n(F) es diagonalizable, entonces su polinomio característico debe tener puras raíces en F. Esta es una condición necesaria, pero aún no es suficiente.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • En la entrada vimos que los eigenvalores de una transformación T son los eigenvalores de cualquier matriz que la represente. ¿Es cierto que los eigenvectores de T son los eigenvectores de cualquier matriz que lo represente?
  • Muestra que una transformación lineal T:V\to V para V un espacio vectorial de dimensión n tiene a lo más n eigenvalores distintos.
  • Encuentra los eigenvalores de las matrices de permutación.
  • Para un real \theta\in[0,2\pi) se define la matriz

        \[A(\theta):=\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.\]

    Muestra que A(\theta) tiene eigenvalores reales si y sólo si \theta=0 \o \theta=\pi. Sugerencia: Encuentra el polinomio característico (que es cuadrático) y calcula su discrimintante. Si es negativo, no tiene soluciones reales.
  • Sea A una matriz en M_n(F). Muestra que la matriz transpuesta ^t A tiene los mismos eigenvalores que A, y de hecho, el mismo polinomio característico que A. Sugerencia. Recuerda que una matriz y su transpuesta tienen el mismo determinante.

Álgebra Lineal I: Problemas de definición y propiedades de determinantes

Introducción

En esta entrada haremos una serie de problemas que nos ayudarán como repaso de los temas vistos durante las últimas dos semanas. Mostraremos algunas propiedades bastante interesantes acerca de las transformaciones alternantes y antisimétricas, así como de la transformación estrella de esta semana: el determinante.

Problemas de transformaciones antisimétricas

En la entrada del miércoles 6 de mayo, hablábamos sobre la equivalencia entre transformaciones alternantes y antisimétricas, justo resaltamos que ésto no es cierto si el campo F es \mathbb{Z}_2, y el siguiente ejemplo lo expone:

Ejemplo. Sea f:\mathbb{Z}_2 \times \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 definido como f(x,y)=xy. Claramente f es bilineal, pero no es alternate ya que f(1,1)=1\neq 0. Por otro lado, f es antisimétrica, porque f(x,y)+f(y,x)=xy+yx=2xy=0.

\square

De manera natural surge la pregunta: ¿cómo podemos construir una transformación d-lineal antisimétrica o alternante? El siguiente problema muestra un camino para obtener una transformación antisimétrica dada un mapeo d-lineal f.

Problema. Sea f:V^d \rightarrow W una transformación d-lineal. Demuestra que

A(f):=\sum_{\sigma \in S_d} \text{sign}(\sigma) \sigma (f)

es un mapeo d-lineal antisimétrico.

Solución. Es fácil ver que A(f) es una transformación d-lineal, dado que A(f) es una combinación lineal de mapeos d-lineales. Queremos probar que, para \tau \in S_d, \tau (A(f))=\text{sign}(\tau) A(f). Notemos que

    \begin{align*} \tau(A(f)) &= \sum_{\sigma \in S_d} \text{sign}(\sigma) \tau(\sigma(f)) \\&= \sum_{\sigma \in S_d} \text{sign}(\sigma) (\tau\sigma)(f). \end{align*}

Usando el hecho que \text{sign}(\tau)\text{sign}(\sigma)=\text{sign}(\tau\sigma) y que \{ \tau \sigma : \sigma \in S_d \}=S_d, obtenemos que

    \begin{align*} \text{sign}(\tau)\tau(A(f)) &= \sum_{\sigma \in S_d} \text{sign}(\tau\sigma) (\tau\sigma)(f) \\&= \sum_{\eta \in S_d} \text{sign}(\eta) (\eta)(f) =A(f). \end{align*}

Por lo tanto, \tau(A(f))=\text{sign}(\tau)A(f).

\square

Problemas de determinantes

Ahora continuando con la discusiones del determinante, sabemos que éste es una forma n-lineal alternante, y además que cualquier otra forma n-lineal alternante varía de \det(b_1,\ldots,b_n) únicamente por un factor multiplicativo. Otro resultado interesante ese teorema es el siguiente:

Problema. Sea V un espacio vectorial sobre F de dimensión finita. Sea e_1,\ldots,e_n una base de V y sea T:V\rightarrow V una transformación lineal. Demuestra que para todo v_1,\ldots,v_n\in V tenemos que

\sum_{i=1}^n \det(v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots, v_n) =\text{Tr}(T)\cdot \det(v_1,\ldots,v_n),

donde todos los determinantes están calculados en la base canónica y \text{Tr}(T) es la traza de la matriz de T (con respecto a la base canónica).

Solución. Definimos el mapeo \phi:V^n\rightarrow F como

\phi(v_1,\ldots,v_n)=\sum_{i=1}^n \det(v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots,v_n).

Esta transformación es la suma de transformaciones n-lineales, por lo tanto \phi es n-lineal. Más aún, es alternante, ya que si asumimos, por ejemplo, que v_1=v_2, entonces

    \begin{align*} \phi(v_1,v_1,v_3,\ldots,v_n) &=\det(T(v_1),v_1,v_3,\ldots,v_n)+ \det(v_1,T(v_1),v_3,\ldots,v_n) \\&+ \sum_{i=3}^n \det(v_1,v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots,v_n) \\&= \det(T(v_1),v_1,v_3,\ldots,v_n)+ \det(v_1,T(v_1),v_3,\ldots,v_n) \\&= \det(T(v_1),v_1,v_3,\ldots,v_n)- \det(T(v_1),v_1,v_3,\ldots,v_n) \\&=0, \end{align*}

debido a que el determinante es antisimétrico.

Por el último teorema visto en la clase del viernes pasado, existe escalar \alpha tal que

\phi(v_1,\ldots,v_n)=\alpha \det(v_1,\ldots,v_n)

para todo v_1,\ldots,v_n. Sea A=[a_{ij}] la matriz de T con respecto a la base canónica. Si tomamos v_1=e_1,\ldots,v_n=e_n, por el mismo teorema tenemos que

    \begin{align*} \alpha &= \phi(e_1,\ldots,e_n) \\&=\sum_{i=1}^n \det(e_1,\ldots,e_{i-1},\sum_{j=1}^n a_{ji}e_j, e_{i+1},\ldots,e_n)\\&=\sum_{i=1}^n \sum_{j=1}^n a_{ji}\det(e_1,\ldots,e_{i-1},e_j,e_{i+1},\ldots,e_n) \\&= \sum_{i=1}^n a_{ii} = \text{Tr}(T). \end{align*}

Por lo tanto, obtenemos lo que queremos.

\square

Por último, los siguientes dos problemas nos ilustran como podemos obtener información de las matrices de manera fácil y «bonita», usando algunas propiedades de los determinantes vistas en la sesión del martes pasado.

Problema. Sea n un número impar y sean A,B\in M_n(\mathbb{R}) matrices tal que A^2+B^2=0_n. Prueba que la matriz AB-BA no es invertible.

Solución. Notemos que

(A+iB)(A-iB)=A^2+B^2+i(BA-AB)=i(BA-AB).

Por la propiedad del determinante de un producto, tenemos que

\det(A+iB)\det(A-iB)=i^n \det(BA-AB).

Suponemos que AB-BA es invertible, entonces \det(BA-AB)\neq 0. Además sabemos que

\det(A-iB)=\det(\overline{A+iB})=\overline{\det(A+iB)},

esto implica que |\det(A+iB)|^2=i^n\det(BA-AB). Como consecuencia, i^n es un número real, contradiciendo al hecho que n es impar. Por lo tanto \det(BA-AB)=0.

\square

Problema. Para 1\leq i,j\leq n, definimos a_{ij} como el número de divisores positivos en común de i y j y definimos b_{ij} igual a 1 si j divide i e igual a 0 si no.

  1. Probar que A=B\cdot ^t B, donde A=[a_{ij}] y B=[b_{ij}].
  2. ¿Qué podemos decir de la forma de B?
  3. Calcula \det(A).

Solución. 1) Fijando i,j tenemos que

\det(B\cdot ^t B)_{ij}=\sum{k=1}^n b_{ik}b_{jk}.

Notemos que b_{ik}b_{jk} no es cero (b_{ij},b_{jk}=1) si y sólo si k divide a i y a j, esto implica que la cantidad de términos de la suma no ceros corresponde exactamente con la cantidad de los divisores en común que tengan i y j. Por lo tanto \det(B\cdot ^tB)_{ij}=a_{ij}.

2) Si i<j, no es posible que j divida a i. Entonces b_{ij}=0 para todo i<j, esto significa que B es, al menos, triangular inferior. Un dato más que podemos asegurar es que b_{ii}=1 para toda i, por lo tanto, al menos, todos los términos de la diagonal de B son iguales a 1.

3) Dada la propiedad multiplicativa del determinante, dado que \det(B)=\det(^tB) y usando el inciso (1), tenemos que \det(A)=\det(B\cdot ^tB)=(\det B)^2. Pero por el inciso (2), \det B=1, concluimos que \det A=1.

\square

Álgebra Lineal I: Determinantes de matrices y transformaciones lineales

Introducción

En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.

Determinantes de transformaciones lineales

Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.

Si tomamos un espacio vectorial V de dimensión finita n\geq 1 sobre un campo F, una transformación lineal T:V\to V y una forma n-lineal f:V^n\to F, se puede mostrar que la transformación

    \[T_f:V^n\to F\]

dada por

    \[T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))\]

también es una forma n-lineal. Además, se puede mostrar que si f es alternante, entonces T_f también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.

Teorema. Sea V un espacio vectorial de dimensión finita n\geq 1 sobre el campo F. Para cualquier transformación lineal T:V\to V existe un único escalar \det T en F tal que

    \[f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)\]

para cualquier forma n-lineal alternante f:V^n\to F y cualquier elección x_1,\ldots,x_n de vectores en V.

Demostración. Fijemos una base B=(b_1,\ldots,b_n) cualquiera de V. Llamemos g a la forma n-lineal alternante \det_{(b_1,\ldots,b_n)}. Por la discusión de arriba, la asignación T_g:V^n\to F dada por

    \[(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))\]

es una forma n-lineal y alternante.

Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que

    \[T_g = T_g(b_1,\ldots,b_n) \cdot g.\]

Afirmamos que \det T:= T_g(b_1,\ldots, b_n) es el escalar que estamos buscando.

En efecto, para cualquier otra forma n-lineal alternante f, tenemos por el mismo teorema que

    \[f=f(b_1,\ldots,b_n) \cdot g.\]

Usando la linealidad de T y la igualdad anterior, se tiene que

    \begin{align*}T_f &= f(b_1,\ldots,b_n)\cdot T_g\\&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\&= \det T \cdot f.\end{align*}

Con esto se prueba que \det T funciona para cualquier forma lineal f. La unicidad sale eligiendo (x_1,\ldots,x_n)=(b_1,\ldots,b_n) y f=g en el enunciado del teorema, pues esto forza a que

    \[\det T = g(T(b_1),\ldots,T(b_n)).\]

\square

Ahora sí, estamos listos para definir el determinante de una transformación lineal.

Definición. El escalar \det T del teorema anterior es el determinante de la transformación lineal T.

Para obtener el valor de \det T, podemos entonces simplemente fijar una base B=(b_1,\ldots,b_n) y el determinante estará dado por

    \[\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).\]

Como el teorema también prueba unicidad, sin importar que base B elijamos este número siempre será el mismo.

Ejemplo. Vamos a encontrar el determinante de la transformación lineal T:\mathbb{R}^3 \to \mathbb{R}^3 dada por

    \[T(x,y,z)=(2z,2y,2x).\]

Para ello, usaremos la base canónica de \mathbb{R}^3. Tenemos que

    \begin{align*}T(1,0,0)&=(0,0,2)=2e_3\\T(0,1,0)&=(0,2,0)=2e_2\\T(0,0,1)&=(2,0,0)=2e_1.\end{align*}

De acuerdo al teorema anterior, podemos encontrar al determinante de T como

    \[\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).\]

Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas 1 y 3 su signo cambia en -1. Usando la 3-linealidad en cada entrada, podemos sacar un factor 2 de cada una. Así, tenemos:

    \begin{align*}\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\&=-8.\end{align*}

Concluimos entonces que el determinante de T es -8.

\square

Ejemplo. Vamos ahora a encontrar el determinante de la transformación T:\mathbb{R}_n[x]\to \mathbb{R}_n[x] que deriva polinomios, es decir, tal que T(p)=p'. Tomemos q_0=1,q_1=x,\ldots,q_n=x^n la base canónica de \mathbb{R}_n[x].

Notemos que, T(1)=0, de modo que los vectores T(1),\ldots,T(x^n) son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que

    \[\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.\]

Concluimos entonces que \det T = 0.

\square

Determinantes de matrices

La expresión

    \[\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))\]

para una transformación lineal T también nos permite poner al determinante en términos de las entradas de la matriz de T con respecto a la base B. Recordemos que dicha matriz A_T=[a_{ij}] tiene en la columna i las coordenadas de b_i en la base B. En otras palabras, para cada i se cumple que

    \[T(v_i)=\sum_{j=1}^n a_{ji}v_i.\]

Usando esta notación, obtenemos que

    \[\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},\]

de manera que podemos expresar a \det T en términos únicamente de su matriz en la base B.

Esto nos motiva a definir el determinante de una matriz en general.

Definición. Para una matriz A en M_n(F) de entradas A=[a_{ij}], el determinante de A es

    \[\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.\]

A \det A también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

    \begin{align*}\det A = \begin{vmatrix}a_{11} & a_{12} & \ldots & a_{1n}\\a_{21} & a_{22} & \ldots & a_{2n}\\\vdots & & \ddots & \vdots\\a_{n1} & a_{n2} & \ldots & a_{nn}.\end{vmatrix}\end{align*}

Ejemplo. Si queremos calcular el determinante de una matriz en M_2(F), digamos

    \[A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},\]

debemos considerar dos permutaciones: la identidad y la transposición (1,2).

La identidad tiene signo 1 y le corresponde el sumando ad. La transposición tiene signo -1 y le corresponde el sumando bc. Así,

    \[\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.\]

\square

Retomando la discusión antes de la definición, tenemos entonces que \det T = \det A_T, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de T depende de la base elegida, pero como vimos, el determinante de T no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.

Teorema. Sean A y P matrices en M_n(F) con P invertible. El determinante de A y el de P^{-1}AP son iguales.

Determinantes de matrices triangulares

Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.

Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.

Solución. En una matriz triangular superior tenemos que a_{ij}=0 si i>j. Vamos a estudiar la expresión

    \[\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.\]

Si una permutación \sigma no es la identidad, entonces hay un entero i que no deja fijo, digamos \sigma(i)\neq i. Tomemos a i como el mayor entero que \sigma no deja fijo. Notemos que \sigma(i) tampoco queda fijo por \sigma pues \sigma(\sigma(i))=\sigma(i) implica \sigma(i)=i, ya que \sigma es biyectiva, y estamos suponiendo \sigma(i)\neq i. Por la maximalidad de i, concluimos que \sigma(i)<i.Entonces el sumando correspondiente a \sigma es 0 pues tiene como factor a la entrada a_{i\sigma(i)}=0.

En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es 1. De esta forma,

    \begin{align*}\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\&=a_{11}\cdot \ldots \cdot a_{nn}.\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que la transformación T_f definida en la entrada es n-lineal y alternante.
  • Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal T:\mathbb{R}^n \to \mathbb{R}^n dada por

        \[T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).\]

  • Calcula por definición el determinante de las matrices

        \[\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}\]

    y

        \[\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.\]

  • Calcula por definición el determinante de la matriz

        \[\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}\]

    y compáralo con el de la matriz de 3\times 3 del inciso anterior. ¿Qué notas?
  • Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.

Álgebra Lineal I: Propiedades de determinantes

Introducción

Para esta entrada enunciaremos y demostraremos algunas de las propiedades más importantes de los determinantes tanto para transformaciones lineales como para matrices. Estas propiedades de determinantes y en general el concepto de determinante tiene numerosas aplicaciones en otras áreas de las matemáticas como el cálculo de volúmenes n-dimensionales o el wronskiano en ecuaciones diferenciales, sólo por mencionar algunos, por eso es importante analizar a detalle el determinante de los distintos tipos de matrices y transformaciones lineales que conocemos.

Como recordatorio, veamos qué hemos hecho antes de esta entrada. Primero, transformaciones multilineales. De ellas, nos enfocamos en las que son alternantes y antisimétricas. Definimos el determinante para un conjunto de vectores con respecto a una base, y vimos que, en cierto sentido, son las únicas formas n-lineal alternantes en un espacio vectorial de dimensión n. Gracias a esto, pudimos mostrar que los determinantes para transformaciones lineales están bien definidos, y con ellos motivar la definición de determinante para matrices.

El determinante es homogéneo

La primera de las propiedades de determinantes que enunciaremos tiene que ver con «sacar escalares» del determinante.

Teorema. Sea A una matriz en M_n(F).

  1. Si multiplicamos un renglón o una columna de A por un escalar \lambda, entonces su determinante se multiplica por \lambda.
  2. Se tiene que \det(\lambda A)=\lambda^n A.

Demostración. 1. Sea A_j la matriz obtenida me multiplicar el j-ésimo renglón por \lambda. Siguiendo la definición de determinante vista en la entrada de ayer (determinantes de matrices) vemos que

    \begin{align*}\det A_j&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots \lambda a_{j\sigma(j)}\dots a_{n\sigma(n)}\\&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda a_{1\sigma(1)}\dots a_{n\sigma(n)}\\&= \lambda \det A.\end{align*}

La demostración para la j-ésima columna queda como tarea moral.

2. Sea \lamda A=[\lambda a_{ij}], entonces por definición tenemos

    \begin{align*}\det (\lambda A)&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)(\lambda a_{1\sigma(1)})\dots (\lambda a_{n\sigma(n)})\\&=\displaystyle\sum_{\sigma\in S_n} \text{sign}(\sigma)\lambda^n a_{1\sigma(1)}\dots a_{n\sigma(n)}\\&=\lambda^n \cdot \det A\end{align*}

De manera alternativa, podemos aplicar el primer inciso n veces, una por cada renglón.

\square

Aquí arriba hicimos la prueba explícita a partir de la definición. Una forma alternativa de proceder es notar que el determinante de una matriz es precisamente el determinante \det (de vectores) con respecto a la base canónica de F^n evaluada en los renglones de A. Al multiplicar uno de los renglones por \lambda, el vector entrada de \det se multiplica por \lambda. El resultado se sigue inmediatamente de que \det es una forma n-lineal.

El determinante es multiplicativo

Quizás de entre las propiedades de determinantes, la más importante es que es multiplicativo. Mostraremos esto a continuación.

Teorema. Sea V un espacio vectorial de dimensión finita y transformaciones lineales T_1:V\to V, T_2:V\to V. Se tiene que

    \[\det(T_1\circ T_2) = \det T_1\cdot \det T_2.\]

Demostración. Sea (v_1,\dots , v_n) una base cualquiera de V. Del resultado visto en la entrada anterior y la definición de determinante, se sigue que

    \begin{align*}\det (T_1 \circ T_2)&= \det _{(v_1,\dots , v_n)}(T_1(T_2(v_1)),\dots , T_1(T_2(v_n)))\\&=\det T_1 \cdot \det_{(v_1,\dots , v_n)}(T_2(v_1), \dots , T_2(v_n))\\&= \det T_1 \cdot \det T_2.\end{align*}

\square

Observa cómo la demostración es prácticamente inmediata, y no tenemos que hacer ningún cálculo explícito en términos de coordenadas. La demostración de que el determinante es multiplicativo para las matrices también es muy limpia.

Teorema. Sean A y B matrices en M_n(F). Se tiene que

    \[\det(AB)=\det A \cdot \det B.\]

Demostración. Sean V=F^n, T_1:V\to V la transformación lineal definida por x\mapsto Ax y similarmente T_2:V\to V la transformación lineal definida por x\mapsto Bx. Sabemos que A, B, AB son las matrices asociadas a T_1, T_2, T_1\circ T_2 con respecto a la base canónica, respectivamente.

Recordemos que para una transformación lineal T en V, \det T = \det A_T, para una matriz que la represente en cualquier base. Entonces

    \begin{align*}\det(AB)&=\det A_{T_1\circ T_2}\\&= \det T_1\circ T_2\\&=\det T_1 \cdot \det T_2\\&=\det A_{T_1} \cdot \det A_{T_2} \\&= \det A \cdot \det B.\end{align*}

\square

Nota que hubiera sido muy complicado demostrar que el determinante es multiplicativo a partir de su definición en términos de permutaciones.

El determinante detecta matrices invertibles

Otra de las propiedades fundamentales del determinante es que nos ayuda a detectar cuándo una matriz es invertible. Esto nos permite agregar una equivalencia más a la lista de equivalencias de matrices invertibles que ya teníamos.

Teorema. Una matriz A en M_n(F) es invertible si y sólo si \det A\neq 0.

Demostración. Supongamos que A es invertible, entonces existe B\in M_n(F) tal que AB=I_n=BA.
Así,

1=\det I_n = \det (AB) = \det A \cdot \det B.

Como el lado izquierdo es 1, ambos factores del lado derecho son distintos de 1. Por lo tanto \det A \neq 0. Nota que además esta parte de la prueba nos dice que \det A^{-1}=(\det A)^{-1}.

Ahora supongamos que \det A \neq 0. Sea (e_1, \dots , e_n) la base canónica de F^n y C_1,\dots , C_n las columnas de A. Como \det_{(e_1,\ldots,e_n)} es una forma lineal alternante, sabemos que si C_1,\ldots,C_n fueran linealmente dependientes, la evaluación daría cero. Ya que la columna C_i es la imagen bajo A de e_i, entonces

\det A =\det _{(e_1,\dots , e_n)}(C_1, \dots , C_n) \neq 0.

Por lo tanto los vectores C_1, \dots , C_n son linealmente independientes y así \text{rank}(A)=n. Se sigue que A es una matriz invertible.

\square

Determinante de transformación y matriz transpuesta

Una cosa que no es totalmente evidente a partir de la definición de determinante para matrices es que el determinante no cambia si transponemos una matriz o una transformación lineal. Esta es la última de las propiedades de determinantes que probaremos ahora.

Teorema. Sea A una matriz en M_n(F). Se tiene que

    \[\det({^tA})=\det A.\]

Demostración. Por definición

\det({^tA})=\displaystyle\sum_{\sigma \in S_n}\text{sign}(\sigma^{-1})a_{\sigma^{-1}(1)1 \dots a_{\sigma^{-1}(n)n}}.

Luego, para cualquier permutación \sigma se tiene

    \[a_{\sigma(1)1}\dots a_{\sigma(n)n}=a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}\]

pues a_{i\sigma^{-1}(i)}=a_{\sigma(j)j}, donde j=\sigma^{-1}(i).
También vale la pena notar que

    \[\text{sign}(\sigma^{-1})=\text{sign}(\sigma)^{-1}=\text{sign}(\sigma).\]

De lo anterior se sigue que

    \begin{align*}\det({^tA})&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma^{-1})a_{1\sigma^{-1}(1)}\dots a_{n\sigma^{-1}(n)}\\&=\displaystyle\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\dots a_{n\sigma(n)}\\&=\det A.\end{align*}

\square

Teorema. Sea V un espacio vectorial de dimensión finita T:V\to V una transformación lineal. Se tiene que

    \[\det(^t T) = \det T.\]

Demostración. Sea A la matriz asociada a T, entonces ^tA es la matriz asociada a ^tT. Luego

    \[\det (^tT)=\det (^tA)=\det A = \det T.\]

\square

Veamos un ejemplo de un problema en el que podemos aplicar algunas de las propiedades anteriores.

Problema. Sea A\in M_n(F) una matriz antisimétrica para algún n impar. Demuestra que \det(A)=0.

Demostración. Como A=-A^t, entonces \det A = \det (- {^tA}), pero \det A = \det ({^tA}).
Se sigue que

    \begin{align*}\det ({^tA}) &= \det  (-{^tA})\\&=(-1)^n \det ({^tA})\\&=-\det ({^tA}).\end{align*}

Concluimos \det (^tA)=0

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que al multiplicar una columna de una matriz por \lambda, entonces su determinante se multiplica por \lambda.
  • Demuestra que si una matriz tiene dos columnas iguales, entonces su determinante es igual a cero.
  • Analiza cómo es el determinante de una matriz antisimétrica A\in M_n(F) con n par.
  • Formaliza la frase «el determinante detecta transformaciones invertibles» en un enunciado matemático. Demuéstralo.