Archivo de la etiqueta: sistemas lineales

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema. Considera los vectores

v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)

en \mathbb{R}^4. Prueba que para cualquier elección de x\in\mathbb{R}, los vectores v_1,v_2,v_3 son linealmente independientes.

Solución. Sea A la matriz cuyas columnas son v_1,v_2,v_3, es decir,

A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.

Sabemos que v_1,v_2,v_3 son linealmente independiente si y sólo si \text{dim(span}(v_1,v_2,v_3))=3, ya que \text{rank}(A)=3, y eso es equivalente (por la clase del lunes) a demostrar que A tiene una submatriz de 3\times 3 invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,

lo que implica que es invertible, y por lo tanto v_1,v_2, v_3 son vectores linealmente independientes.

\square

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre \mathbb{R} o sobre \mathbb{C}. Como \mathbb{R}\subset \mathbb{C}, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en \mathbb{R} se cumplen en \mathbb{C}. En este caso particular, si las soluciones de una matriz en M_{m,n}(\mathbb{R}) son soluciones de la misma matriz pero vista como elemento en M_{m,n}(\mathbb{C}). El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea A\in M_{m,n}(F) y sea F_1 un campo contenido en F. Consideremos el sistema lineal AX=0. Si el sistema tiene una solución no trivial en F_1^n, entonces tiene una solución no trivial en F^n.

Demostración. Dado que el sistema tiene una solución no trivial en F_1^n, r:=\text{rank}(A) < n vista como elemento en M_{m,n}(F_1). Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a A como elemento de M_{m,n}(F_1) o de M_{m,n}(F). Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de F^n de dimensión n-r>0. Por lo tanto, el sistema AX=0 tiene una solución no trivial en F^n.

\square

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. Sea S_a el siguiente sistema lineal:

\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.

Encuentra los valores de a para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como AX=b donde

A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.

Notemos que

\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,

entonces si a\neq 1/8, A es invertible, y por lo tanto \text{rank}(A)=3, mientras que si a=1/8, A no es invertible y \text{rank}(A)=2 ya que la submatriz es invertible

\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.

Además, si la matriz (A,b) es igual a

\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, \text{rank}(A,b)=3.

Aplicando el Teorema de Rouché-Capelli, para a=1/8, el sistema AX=b no tiene soluciones. También podemos concluir que como \text{rank}(A)=3 para todo a\neq 1/8, el sistema tiene exactamente una solución. (Y AX=b nunca tiene infinitas soluciones).

\square

Problema. Sean a,b,c números reales dados. Resuelve el sistema lineal

\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.

Solución. La matriz del sistema es

A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.

No es difícil ver que \text{det}(A)=4abc. Si abc\neq 0, usando la regla de Cramer, la única solución al sistema está dada por

x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}

y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},

resolviendo los determinantes obtenemos que

x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.

Ahora, si abc=0, entonces A no es invertible (\text{rank}(A)<3). El sistema es consistente si y sólo si \text{rank}(A)=\text{rank}(A,b).

Sin pérdida de generalidad, decimos que a=0 (pues abc=0). Esto reduce el sistema a

\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.

El sistema es consistente si b=c y distintos de cero. En este caso, tenemos que b(2x+y+z)=1 y b(y+z)=1, implicando x=0, y+z=1/b. De manera similar, obtenemos las posibles soluciones si b=0 o si c=0.

Resumiendo:

  • Si abc\neq 0, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) a=0 y b=c \neq 0; caso 2) b=0 y a=c\neq 0; caso 3) c=0 y a=b\neq 0, tenemos infinitas soluciones descritas como, para todo w\in \mathbb{R}: caso 1) (0,w,1/b-w); caso 2) (w,0,1/a-w); caso 3) (w,1/a-w,0).
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para a,b,c, el sistema no es consistente.

\square