Archivo de la etiqueta: sistemas de ecuaciones

Álgebra Lineal I: Sistemas de ecuaciones lineales AX=b

Introducción

Ya usamos el algoritmo de reducción gaussiana para estudiar sistemas de ecuaciones homogéneos. En esta entrada aplicamos lo que hemos aprendido de este método para resolver sistemas de ecuaciones no homogéneos.

Para hacer esto, adaptaremos la técnica para sistemas homogéneos (que en realidad, no es muy diferente) y la usamos para probar un resultado muy importante, llamado el teorema de existencia y unicidad. Damos unos cuantos ejemplos y concluimos con la prometida demostración de la unicidad de la forma escalonada reducida.

Adaptando el vocabulario

Consideramos un sistema lineal AX=b con A\in M_{m,n}(F) y b\in F^{m}, con variables x_1, \dots, x_n que son las coordenadas de X\in F^{n}. Para resolver el sistema consideramos la matriz aumentada \left(A\vert b\right) obtenida de A al añadir al vector b como columna hasta la derecha.

Ejemplo. Si

    \begin{align*}A= \begin{pmatrix} 0 & 1 & 2\\-1 & 0 &1 \end{pmatrix} \text{ y } b= \begin{pmatrix} 12 \\ 14 \end{pmatrix}\end{align*}

entonces

    \begin{align*}\left(A\vert b\right)= \begin{pmatrix} 0 & 1 & 2 & 12\\ -1 & 0 & 1 & 14\end{pmatrix}\end{align*}

\square

Las operaciones elementales del sistema se traducen entonces en operaciones elementales en la matriz aumentada, por lo que para resolver el sistema podemos primero llevar a la matriz aumentada a su forma escalonada y reducida y después resolver el sistema más sencillo. Esto lo podríamos hacer siempre y cuando al realizar operaciones elementales en la matriz aumentada no se modifique el conjunto de soluciones del sistema. Esto lo garantiza la siguiente proposición.

Proposición. Sea el sistema lineal AX=b. Supongamos que la matriz \left(A'\vert b'\right) se obtiene a partir de la matriz \left( A\vert b\right) realizando una sucesión finita de operaciones elementales. Entonces los sistemas AX=b y A'X=b' son equivalentes, es decir, tienen el mismo conjunto de soluciones.

Demostración: Como ya hemos visto anteriormente, realizar operaciones elementales en \left(A \vert b\right) es equivalente a realizar operaciones elementales en las ecuaciones del sistema AX=b, pero ya sabemos que estas no alteran el conjunto de soluciones, pues son reversibles (es decir, podemos siempre deshacer los cambios).

\square

El teorema de existencia y unicidad

Llegamos ahora a otro resultado clave de nuestro estudio de ecuaciones. Es una caracterización que responde a nuestras preguntas: ¿Hay soluciones? ¿Son únicas? Además, nos puede sugerir cómo encontrarlas.

Teorema. (De existencia y unicidad) Supongamos que la matriz \left(A\vert b\right) ha sido llevada a su forma escalonada reducida \left(A'\vert b'\right) por operaciones elementales.

  1. (Existencia de soluciones) El sistema AX=b es consistente si y sólo si \left(A'\vert b'\right) no tiene ningún pivote (de filas) en su última columna.
  2. (Unicidad de soluciones) Si el sistema es consistente, entonces tiene una única solución si y sólo si A' tiene pivotes (de filas) en cada columna.

Demostración:

  1. Supongamos que \left(A'\vert b'\right) tiene un pivote en su última columna. Debemos ver que el sistema AX=b no tiene solución. Para esto, basta ver que el sistema A'X=b' no tiene solución, pues es un sistema equivalente.

    Si el pivote aparece en el i-ésimo renglón entonces este es de la forma (0, \dots, 0, 1), pues recordemos que los pivotes son iguales a 1 en la forma escalonada reducida. Entonces entre las ecuaciones del sistema A'X=b' tenemos una de la forma 0 x_1' +\dots +0 x_n'=1, que no tiene solución alguna. Así el sistema A'X=b' no es consistente, y por tanto AX=b tampoco lo es.

    Conversamente, supongamos que \left(A' \vert b'\right) no tiene un pivote en su última columna. Digamos que A' tiene pivotes en las columnas j_1<\dots <j_k \leq n y sean x_{j_1}, \dots, x_{j_k} las correspondientes variables pivote y todas las demás variables son libres. Dando el valor cero a todas las variables libres obtenemos un sistema en las variables x_{j_1}, \dots, x_{j_k}. Este sistema es triangular superior y se puede resolver empezando por la última ecuación, encontrando x_{j_k}, luego x_{j_{k-1}} y así sucesivamente. Así encontramos una solución, por lo que el sistema es consistente. Esta solución encontrada también es una solución a AX=b, pues es un sistema equivalente.
  2. Como le podemos dar cualquier valor escalar a las variables libres, el argumento del párrafo anterior nos dice que la solución es única si y sólo si no tenemos variables libres, pero esto pasa si y sólo si los pivotes llegan hasta la última columna de A'.

\square

Ten cuidado. En la primer parte, la condición se verifica con (A'|b). En la segunda parte, la condición se verifica con A'.

Encontrando y contando soluciones

Por simplicidad, asumamos que F=\mathbb{R}, es decir que nuestro campo de coeficientes del sistema AX=b es el de los números reales. Procedemos como sigue para encontrar el número de soluciones del sistema:

  1. Consideramos la matriz aumentada \left(A\vert b\right).
  2. Llevamos esta matriz a su forma escalonada reducida \left(A'\vert b'\right).
  3. Si esta matriz tiene un renglón de la forma (0, \dots, 0, 1), entonces el sistema es inconsistente.
  4. Si no tiene ningún renglón de esa forma, vemos si todas las columnas de A' tienen al pivote de alguna fila:
    • Si en efecto todas tienen pivote, entonces el sistema tiene una única solución.
    • Si no todas tienen pivote, entonces nuestro sistema tiene una infinidad de soluciones.

En el caso en el que hay una o una infinidad de soluciones, además podemos decir exactamente cómo se ven esas soluciones:

  • Haciendo las variables libres iguales a cero (si es que hay), obtenemos una solución X' al sistema AX=b.
  • Usamos reducción gaussiana para encontrar todas las soluciones al sistema homogéneo AX=0.
  • Finalmente, usamos el principio de superposición. Todas las soluciones a AX=b son de la forma X' más una solución a AX=0.

Problema. Consideremos la matriz

    \begin{align*}A= \begin{pmatrix} 1 & 2 & 2\\ 0 & 1 & 1\\ 2 & 4 &4 \end{pmatrix}.\end{align*}

Dado b\in \mathbb{R}^3, encuentra condiciones necesarias y suficientes en términos de las coordenadas de b para que el sistema AX=b sea consistente.

Solución: Dado b con coordenadas b_1, b_2 y b_3, la matriz aumentada es

    \begin{align*}\left( A\vert b\right) = \begin{pmatrix} 1 & 2 & 2 & b_1 \\ 0 & 1 & 1 & b_2 \\  2 & 4 & 4 & b_3\end{pmatrix}.\end{align*}

Para obtener su forma escalonada reducida sustraemos dos veces el primer renglón del tercero y luego dos veces el segundo del primero, obteniendo así:

    \begin{align*}\left( A\vert b\right) \sim \begin{pmatrix} 1 & 0 & 0 &b_1-2b_2\\ 0 & 1 &  1 & b_2\\ 0 & 0 & 0 &b_3-2b_1\end{pmatrix}.\end{align*}

Por el teorema anterior, el sistema AX=b es consistente si y sólo si esta matriz no tiene pivotes en la última columna, es decir, necesitamos que la entrada de hasta abajo a la derecha sea cero. Así, el sistema es consistente si y sólo si b_3-2b_1=0 o, dicho de otra manera, si y sólo si b_3=2b_1.

\square

Unicidad de la forma escalonada reducida

Concluimos esta entrada con una demostración de la unicidad de la forma escalonada reducida, usando que si dos matrices A y B que difieren por una sucesión finita de operaciones elementales entonces los sistemas AX=0 y BX=0 son equivalentes. La demostración que presentamos (corta y elegante) se debe a Thomas Yuster, publicada en el año 1983.

Teorema. La forma escalonada reducida es única.

Demostración: Procedemos por inducción sobre n, el número de columnas de A\in M_{m,n}(F). El resultado es claro para n=1, pues solo tenemos una columna cero o una columna con un 1 hasta arriba. Supongamos pues que el resultado se cumple para n-1, y demostremos que se cumple para n. Sea A\in M_{m,n}(F) y sea A'\in M_{m,n-1}(F) la matriz que se obtiene al quitarle la n-ésima columna.

Supongamos que B y C son ambas matrices distintas en forma escalonada reducida obtenidas de A. Dado que una sucesión de operaciones elementales que llevan a A a una forma escalonada reducida también llevan a A' a una forma escalonada reducida (si a una matriz escalonada reducida le cortamos una columna, sigue siendo escalonada reducida), podemos aplicar la hipótesis de inducción y concluir que si B y C son distintas entonces difieren en la columna que quitamos y solo en esa.

Sea j tal que b_{jn}\neq c_{jn} (por nuestra discusión previa, existe esta entrada, ya que asumimos que B\neq C). Si X es un vector tal que BX=0 entonces CX=0, ya que A,B y C son matrices equivalentes. Luego (B-C)X=0. Como B y C difieren solo en la última columna, la j-ésima ecuación del sistema se lee (b_{jn}-c_{jn})x_n=0, pues los coeficientes previos son cero. Así, x_n=0 siempre que BX=0 o CX=0. Se sigue que x_n no es una variable libre para B y C, por lo que ambas tienen un pivote en la última columna. Como ambas están en forma escalonada reducida, entonces la última columna tiene necesariamente un 1 en la entrada de hasta abajo y puros ceros en otras entradas, es decir, B y C tienen la misma última columna, una contradicción a nuestras suposiciones.

Se sigue que entonces B=C y queda probado por contradicción el paso inductivo, lo que prueba el teorema.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Determina cuántas soluciones tiene el sistema AX=b con

        \begin{align*} A=\begin{pmatrix} 0 & 1 &1\\ 2& -4 & 7\\ 0 & 0 & 1 \end{pmatrix}\text{ y } b=\begin{pmatrix} 1 \\ 6 \\-1\end{pmatrix}\end{align*}

  • Si A tiene estrictamente más renglones que columnas y b es un vector que no tiene ninguna entrada cero, ¿puede el sistema AX=b ser consistente?
  • Si A tiene estrictamente más columnas que renglones, ¿puede el sistema AX=0 tener una única solución?
  • Si A\in M_{m,n}(F) es una matriz diagonal, ¿que puedes decir de la consistencia y la unicidad de soluciones del sistema AX=b?

Álgebra Lineal I: Forma escalonada reducida

Introducción

En esta entrada tratamos la forma escalonada reducida de una matriz, que es básicamente una forma «bonita» de expresar una matriz que nos permite resolver sistemas de ecuaciones lineales. Luego nos adentramos en la parte de operaciones elementales, que es el primer paso para desarrollar un algoritmo (que luego veremos es la reducción gaussiana) que nos permite llevar a cualquier matriz a su forma escalonada reducida.

En otras palabras, en esta entrada vemos cómo resolver un caso fácil de un sistema de ecuaciones. Más adelante veremos que en realidad cualquier caso puede llevarse al caso fácil con un algoritmo relativamente fácil.

¿Qué es la forma escalonada reducida?

Sea una matriz A con entradas en un campo F. Si R es un renglón de A, diremos que R es una fila cero si todas sus entradas son cero. Si R no es una fila cero, el término principal de R o bien el pivote de R es la primera entrada distinta de cero de la fila. Diremos que A está en forma escalonada reducida si A tiene las siguientes propiedades:

  1. Todas las filas cero de A están hasta abajo de A (es decir, no puede seguirse una fila distina de cero después de una cero).
  2. El término principal de una fila no-cero está estrictamente a la derecha del término principal de la fila de encima.
  3. En cualquier fila distinta de cero, el término principal es 1 y es el único elemento distinto de cero en su columna.

Ejemplo. La matriz I_n está en forma escalonada reducida, así como la matriz cero O_n. La matriz

    \begin{align*}A= \begin{pmatrix} 1 &-1 & 0 &2\\  0 & 0 & 1 & -1\\ 0 & 0 & 0 & 0 \end{pmatrix} \end{align*}

está en forma escalonada reducida. El término principal de la primer fila es 1 y está en la primer columna. El término principal de la segunda fila también es 1, y se encuentra más a la derecha que el término principal de la fila anterior. Además, es la única entrada distinta de cero en su columna.

Sin embargo, la matriz ligeramente distinta

    \begin{align*}B= \begin{pmatrix} 1 &-1 & 5 &2\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 0 \end{pmatrix} \end{align*}

no está en forma escalonada reducida ya que el término principal del segundo renglón no es la única entrada distinta de cero en su columna.

\square

¿Cómo la forma escalonada reducida nos permite resolver sistemas de ecuaciones?

¿Cual es la importancia de la forma escalonada con respecto al problema de resolver sistemas de ecuaciones? Veremos que cualquier matriz se puede poner (de manera algorítmica) en forma escalonada reducida y que esta forma es única. También veremos que si A_{red} es la forma escalonada reducida de una matriz, entonces los sistemas AX=0 y A_{red}X=0 son equivalentes. Además, veremos que resolver el sistema A_{red} X=0 es muy fácil de resolver precisamente por estar en forma escalonada reducida.

Ejemplo. Resolvamos el sistema AX=0 donde A es la matriz que dimos anteriormente, que está en forma escalonada reducida. El sistema asociado es

    \begin{align*}\begin{cases}x_1 -x_2+2x_4&=0\\x_3-x_4&=0\end{cases}.\end{align*}

De la segunda igualdad podemos expresar x_3=x_4 y de la primera x_1=x_2-2x_4. Así, podemos escoger x_2 y x_4 «libremente» y obtener x_3 y x_1 con estas ecuaciones (tenemos, de cierta manera, dos «parámetros libres»), por lo que nuestras soluciones se ven de la forma

    \begin{align*}(a-2b, a, b,b )\end{align*}

con a,b\in F.

\square

En general si A es una matriz en forma escalonada reducida, veamos cómo resolver el sistema AX=0. Las únicas ecuaciones importantes son las que resultan de renglones distintos de cero (pues las otras solo son 0=0) y al estar en forma escalonada reducida, todos los renglones cero están hasta el final. Supongamos que el i-ésimo renglón de A es distinto de cero y su término principal está en la j-ésima columna, así el término principal es a_{ij}=1. La i-ésima ecuación del sistema lineal entonces es de la forma

    \begin{align*}x_j +\sum_{k=j+1}^{n} a_{ik} x_k =0.\end{align*}

Llamamos a x_j la variable pivote del renglón L_i. Así, a cada renglón distinto de cero le podemos asociar una única variable pivote. Todas las demás variables del sistema son llamadas variables libres. Uno resuelve el sistema empezando desde abajo, expresando sucesivamente las variables pivote en términos de las variables libres. Esto nos da la solución general del sistema, en términos de las variables libres, que pueden tomar cualquier valor en F.

Si y_1, \dots, y_s son las variables libres, entonces las soluciones del sistema son de la forma

    \begin{align*}X= \begin{pmatrix}b_{11} y_1 + b_{12} y_2 + \dots+ b_{1s} y_s\\b_{21} y_1+ b_{22} y_2 +\dots+b_{2s} y_s\\\vdots\\b_{n1} y_1 +b_{n2} y_2+ \dots + b_{ns} y_s\end{pmatrix}\end{align*}

para algunos escalares b_{ij}. Esto también se puede escribir como

    \begin{align*}X= y_1 \begin{pmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1}\end{pmatrix}+\dots + y_s \begin{pmatrix} b_{1s} \\ b_{2s}\\ \vdots \\ b_{ns} \end{pmatrix} .\end{align*}

Llamamos a

    \begin{align*} Y_1= \begin{pmatrix} b_{11}\\ b_{21}\\ \vdots \\ b_{n1}\end{pmatrix}, \dots, Y_s= \begin{pmatrix} b_{1s} \\ b_{2s} \\ \vdots \\ b_{ns}\end{pmatrix}\end{align*}

las soluciones fundamentales del sistema AX=0. La motivación para su nombre es fácil de entender: Y_1, \dots, Y_s son soluciones del sistema AX=0 que ‘generan’ todas las otras soluciones, en el sentido que todas las soluciones del sistema AX=0 se obtienen a través de todas las combinaciones lineales de Y_1, \dots, Y_s (correspondiendo a todos los valores posibles de y_1, \dots, y_s).

Un ejemplo para aterrizar los conceptos

Sea A la matriz en forma escalonada reducida dada como sigue

    \begin{align*}A= \begin{pmatrix}1 & 1 & 0 & 0  &-1 & 0 & 2\\ 0 & 0 & 1 & 0 & 3 & 0 & 1\\ 0 & 0 & 0 & 1& 0 & 0 &-1\\ 0 & 0 &0 & 0 & 0 & 1 & 0 \\ 0 & 0 &0 & 0 & 0 & 0 & 0 \end{pmatrix}\end{align*}

y consideremos el sistema homogéneo asociado AX=0. Este se puede escribir como

    \begin{align*}\begin{cases} x_1+x_2-x_5+2x_7&=0\\x_3+3x_5+x_7&=0\\x_4-x_7&=0\\x_6&=0\end{cases}.\end{align*}

Las variables pivote son x_1, x_3, x_4 y x_6, ya que los términos principales aparecen en las columnas 1,3,4 y 6. Eso nos deja a x_2, x_5 y x_7 como variables libres.

Para resolver el sistema, empezamos con la última ecuación y vamos «subiendo», expresando en cada paso las variables pivote en términos de las variables libres. La última ecuación nos da x_6=0. Después, obtenemos x_4=x_7, posteriormente x_3=-3x_5-x_7 y x_1= -x_2+x_5-2x_7. Nunca nos va a pasar que tengamos que expresar a una variable pivote en términos de otra variable pivote, por la condición de que cada pivote es la única entrada no cero en su columna.

Para expresar las soluciones en términos vectoriales, hacemos lo siguiente.

    \begin{align*}X&=\begin{pmatrix}-x_2+x_5 -2x_7\\x_2\\-3x_5-x_7\\x_7\\x_5\\0 \\x_7\end{pmatrix}\\ &= x_2\cdot \begin{pmatrix}-1 \\ 1 \\ 0 \\ 0\\ 0 \\ 0 \\ 0 \end{pmatrix} +x_5\cdot \begin{pmatrix} 1 \\ 0 \\ -3 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}+x_7 \cdot \begin{pmatrix} -2\\ 0 \\ -1\\ 1 \\ 0 \\ 0 \\1 \end{pmatrix}.\end{align*}

Los tres vectores columna que aparecen del lado derecho de la igualdad son entonces las soluciones fundamentales del sistema AX=0. Todas las soluciones están entonces dadas por la expresión de la derecha, donde x_2, x_5 y x_7 pueden tomar cualquier valor en F.

Una moraleja sobre el número de soluciones

El número de soluciones fundamentales del sistema AX=0 es igual al número total de variables menos el número de variables pivote. Deducimos que el sistema AX=0 tiene como única solución a X=0 si no hay variables libres. Esto es lo mismo que decir que el número de variables pivote es igual al número de columnas de A.

Combinando las observaciones anteriores con el principio de superposición obtenemos el siguiente y muy importante resultado.

Teorema.

  1. Un sistema lineal homogéneo que tiene más variables que ecuaciones tiene soluciones no triviales. Si el campo de coeficientes es infinito (como por ejemplo \mathbb{R} o \mathbb{C}), entonces el sistema tiene infinitas soluciones.
  2. Un sistema lineal consistente AX=b que tiene más variables que ecuaciones tiene al menos dos soluciones, y si el campo es infinito, tiene infinitas soluciones.

¿Cómo llevar una matriz a su forma escalonada reducida? Operaciones elementales

Ahora regresamos al problema de transformar una matriz dada en una matriz con forma escalonada reducida. Para resolver este problema introducimos tres tipos de operaciones que pueden aplicarse a las filas de una matriz. Veremos que gracias a estas operaciones, uno puede transformar cualquier matriz en una en forma escalonada reducida.

Estas operaciones surgen de las manipulaciones cuando resolvemos sistemas lineales: las operaciones más naturales que hacemos cuando resolvemos un sistema de ecuaciones lineales son:

  1. multiplicar una ecuación por un escalar distinto de cero;
  2. añadir una ecuación (o mejor aún, un múltiplo de una ecuación) a otra ecuación diferente;
  3. intercambiar dos ecuaciones.

Observamos que estas operaciones son reversibles: si por ejemplo, multiplicamos una ecuación por un escalar a\neq 0, podemos multiplicar la misma ecuación por \frac{1}{a} para recuperar la ecuación original. Queda claro que realizando una cantidad finita de estas operaciones en un sistema obtenemos un sistema con el mismo conjunto de soluciones que el sistema original (en nuestra terminología más barroca, un sistema nuevo equivalente al original). Estas operaciones en el sistema pueden verse como operaciones directamente en la matriz. Más precisamente:

Definición. Una operación elemental en las filas de una matriz A en M_{m,n}(F) es una operación de uno de los siguientes tipos:

  1. cambio de filas: intercambiar dos renglones de la matriz A,
  2. reescalar una fila: multiplicar una fila de la matriz A por un escalar c en F distinto de cero,
  3. transvección: reemplazar una fila L por L+cL' para algún escalar c en F y otra fila L' de A diferente a L.

La discusión previa muestra que si A es una matriz y B se obtiene a partir de A al aplicar una sucesión finita de operaciones elementales entonces A\sim B (recordamos que esa notación solo nos dice que los sistemas AX=0 y BX=0 son equivalentes).

Correspondiendo a estas operaciones definimos las matrices elementales:

Definición. Una matriz A\in M_n(F) es una matriz elemental si se obtiene de I_n al realizar una operación elemental.

Ejemplo. La matriz

    \begin{align*}B= \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\end{pmatrix}\end{align*}

es una matriz elemental, pues se obtiene al intercambiar el primer y segundo renglón de I_3.

Observamos que las matrices elementales son cuadradas. Tenemos entonces tres tipos de matrices elementales:

  1. Matrices de transposición: aquellas que resultan de intercambiar dos renglones de I_n.
  2. Matrices de dilatación: aquellas obtenidas de I_n multiplicando uno de sus renglones por un escalar distinto de cero.
  3. Matrices de transvección: son las que obtenemos de I_n al añadir el múltiplo de un renglón a otro renglón.

Una sencilla, pero crucial observación es la siguiente:

Proposición. Sea A\in M_{m,n}(F) una matriz. Realizar una operación elemental en A es equivalente a multiplicar a A por la izquierda por la matriz elemental en M_{m}(F) correspondiente a la operación.

Demostración: Si E es una matriz de m\times m y A\in M_{m,n}(F), entonces la i-ésima fila de EA es e_{i1} L_1+ e_{i2} L_2+\dots + e_{im} L_m donde L_1, \dots, L_m son las filas de A y e_{ij} es la (i,j)-ésima entrada de E. El resultado se sigue de las definiciones y haciendo caso por caso, de acuerdo al tipo de operación elemental que se trate.

Por ejemplo, si la operación es un intercambio de filas, entonces E es una matriz de transposición en donde, digamos, se intercambiaron la fila k y la fila l. Por lo que mencionamos arriba, las filas L_i con i\neq k y i\neq l permanecen intactas, pues e_{ij}=1 si i=j y 0 en otro caso, de modo que la i-ésima fila de EA es simplemente L_i. Para la fila k de EA, tenemos que e_{kl}=1 y si i\neq k, entonces e_{ki}=0. De esta forma, tendríamos que dicha fila es L_l. El análisis de la l-ésima fila de EA es análogo.

Los detalles de la demostración anterior, así como las demostraciones para operaciones de reescalamiento y transvección, quedan como tarea moral.

\square

Ejemplo. Consideremos la matriz A=\begin{pmatrix} 1 & -2 & 3 & 0\\ 0 & 1 & 0 & 1 \\ -1 & 0 & 3 & 0 \end{pmatrix}. Vamos a efectuar la transvección que suma 2 veces la primer fila a la última.

Si la aplicamos a la matriz A nos queda

    \[A'=\begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & -4 & 9 & 0 \end{pmatrix}.\]

Para obtener la matriz elemental correspondiente a la transvección, tenemos que aplicársela a la identidad I_3. Tras hacer esto nos queda

    \[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 &1 \end{pmatrix}.\]

Y en efecto, como afirma la proposición, tenemos que esta matriz que obtuvimos sirve para «aplicar» la transvección pues puedes verificar que si la multiplicamos por la izquierda, tenemos que:

    \[\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 &1 \end{pmatrix} \begin{pmatrix} 1 & -2 & 3 & 0\\ 0 & 1 & 0 & 1 \\ -1 & 0 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 3 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & -4 & 9 & 0 \end{pmatrix}.\]

\square

Más adelante…

En la entrada de reducción gaussiana terminaremos de probar que toda matriz puede llevarse mediante operaciones elementales a una matriz en forma escalonada reducida. Más aún, obtendremos un algoritmo sencillo que siempre nos permitirá hacerlo. En el transcurso de este algoritmo siempre tendremos matrices equivalentes entre sí, de modo que esta será una herramienta fundamental para resolver sistemas de ecuaciones lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • En el ejemplo concreto que hicimos, verifica que en efecto las soluciones fundamentales que obtuvimos son solución al sistema. Verifica también que la suma de las tres también es una solución al sistema. Luego, elige los valores que tú quieras para x_2,x_5,x_7 y verifica que esa también es una solución
  • ¿Será cierto que la transpuesta de una matriz en forma escalonada reducida también está en forma escalonada reducida? ¿Será cierto que la suma de dos matrices en forma escalonada reducida también es de esta forma?
  • Termina los detalles de la demostración de la última proposición.
  • Demuestra que toda matriz elemental es invertible, y que su inversa también es una matriz elemental.
  • ¿Es cierto que la transpuesta de una matriz elemental es una matriz elemental?

Álgebra Lineal I: Problemas de sistemas de ecuaciones y forma escalonada reducida

Introducción

En esta entrada nos encargaremos de resolver algunos problemas de sistemas de ecuaciones lineales y de dar algunos ejemplos más de matrices en forma escalonada reducida.

Problemas de sistemas de ecuaciones lineales

Problema. ¿Para cuáles números reales a se tiene que el siguiente sistema es consistente?. Resuelve el sistema para estos casos.

    \begin{align*}\begin{cases}x + 2y &=1\\4x+8y &=a.\end{cases}\end{align*}

Solución. Tomando la primera ecuación y multiplicandola por 4 vemos que

    \begin{align*}4x+8y=4\end{align*}

De lo anterior se sigue que el único número real a para el cuál el sistema es consistente es a=4, pues en otro caso tendríamos ecuaciones lineales que se contradicen entre sí.

Cuando a=4, tenemos entonces una única ecuación x+2y=1. Para encontrar todas las soluciones a esta ecuación lineal, podemos fijar el valor de y arbitrariamente como un número real r. Una vez fijado y, obtenemos que x=1-2y=1-2r. Así, el conjunto de soluciones es

    \[\{(1-2r,r): r \in \mathbb{R}\}.\]

\square

Problema. Encuentra todos a,b\in\mathbb{R} para los cuales los sistemas

    \begin{align*}\begin{cases}2x + 3y &=-2\\x - 2y &=6\end{cases}\end{align*}


y

    \begin{align*}\begin{cases}x + 2ay &=3\\-x - y &=b\end{cases}\end{align*}


son equivalentes.

Solución. Para resolver el primer sistema tomamos la segunda ecuación y despejamos x:

    \begin{align*}x=6+2y.\end{align*}


Sustituyendo lo anterior en la primera ecuación se tiene

    \begin{align*}2(6+2y)+3y&=-2\\ 12+7y&=-2\\7y&=-14\\y&=-2.\end{align*}


Luego sustituimos el valor de y para encontrar x

    \begin{align*}x&=6+2y\\&=6+2(-2)\\&=2.\end{align*}


Ahora, para encontrar los valores de a y b, sustituimos los valores de x y y que encontramos en el primer sistema y de esta forma garantizamos que ambos sistemas tendrán el mismo conjunto de soluciones, es decir, son equivalentes.

    \begin{align*}\begin{cases}x + 2ay &=3\\-x - y &=b\end{cases}\end{align*}


    \begin{align*}\begin{cases}2 + 2a(-2) &=3\\-2 - (-2) &=b\end{cases}\end{align*}


De la segunda ecuación es inmediato que b=0.
Por otro lado, despejando a de la primera ecuación se tiene

    \begin{align*}2-4a&=3\\-4a&=1\\a&=-\frac{1}{4}\end{align*}


Concluimos que los sistemas son equivalentes cuando

    \begin{align*}a=-\frac{1}{4}, \hspace{4mm} b=0.\end{align*}

\square

Más ejemplos de forma escalonada reducida

Para finalizar con esta entrada veremos más ejemplos de matrices que están en forma escalonada reducida y de matrices que no lo están.

Ejemplo. La matriz

    \begin{align*}\begin{pmatrix}2 & -1 & 3 & 1\\1 & 0 & 2 & 2\\3 & 1 & 7 & 0\\1 & 2 & 4 & -1\end{pmatrix}\end{align*}


no está en forma escalonada reducida, pues todas las entradas de la primera columna son distintas de cero.
En cambio, la matriz

    \begin{align*}\begin{pmatrix}1 & 0 & 2 & 0\\0 & 1 & 1 & 0\\0 & 0 & 0 & 1\\0 & 0 & 0 & 0\end{pmatrix}\end{align*}


sí está en forma escalonada reducida. Queda como tarea moral verificar que esto es cierto.

\square

Ejemplo. La matriz

    \begin{align*}\begin{pmatrix}0 & 0 & 0 & 0 & 0\\0 & 1 & -5 & 2 & 0\\0 & 0 & 0 & 0 & 3\\0 & 0 & 0 & 0 & 0\end{pmatrix}\end{align*}


no está en forma escalonada reducida, pues hay filas cero por encima de filas no cero. Otro problema que tiene es que el pivote de la tercer fila no es igual a 1.


En cambio

    \begin{align*}\begin{pmatrix}1 & 0 & 0 & 0 & -1\\0 & 1 & 0 & 0 & 2\\0 & 0 & 1 & 0 & 1\\0 & 0 & 0 & 1 & 1\end{pmatrix}\end{align*}


sí está en forma escalonada reducida.

\square

Ejemplo. La matriz \begin{pmatrix} 0 & 1 & 2  \\ 1 & 0 & 0 \end{pmatrix} no está en forma escalonada reducida pues el pivote de la segunda fila está más a la izquierda que el de la primera. Sin embargo, si intercambiamos las filas, la matriz \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix} sí está en forma escalonada reducida.

\square

Más adelante veremos un método para llevar una matriz a su forma escalonada reducida y veremos que esto es muy útil para resolver sistemas de ecuaciones lineales.

Álgebra Lineal I: Sistemas de ecuaciones lineales y sistemas homogéneos asociados

Introducción

En esta sección damos un primer acercamiento al concepto de sistemas de ecuaciones lineales. Este es un concepto de fundamental importancia en muchas áreas de las matemáticas, como las ecuaciones diferenciales o incluso la geometría algebraica.

Los sistemas de ecuaciones lineales nos son familiares. Desde la educación secundaria se aprende a resolver ecuaciones «de 2\times 2«, y más adelante «de 3\times 3«. Estos sistemas también aparecen en cursos de la licenciatura, como geometría analítica. Sin embargo, es en un curso de álgebra lineal que se estudian con toda generalidad. Las herramientas de esta área de las matemáticas permiten determinar si un sistema de ecuaciones lineales tiene solución y, en caso de que sí, ver cómo se ven todas las soluciones.

Como veremos a continuación, un sistema de ecuaciones lineales se puede ver en términos de matrices. Esta conexión es fundamental. La información acerca de una matriz nos permite obtener información acerca del sistema de ecuaciones lineales asociado. A la vez, la información sobre un espacio o matriz se puede determinar a partir de la resolución de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Una ecuación lineal en variables x_1, \dots, x_n es una ecuación de la forma

    \begin{align*}a_1 x_1 + \dots +a_n x_n =b,\end{align*}

donde a_1, \dots, a_n, b\in F son escalares dados y n es un entero positivo. Las incógnitas x_1,\dots, x_n suponen ser elementos de F.

Un sistema de ecuaciones lineales en las variables x_1, \dots, x_n es una familia de ecuaciones lineales, usualmente escrito como

    \begin{align*}\begin{cases}a_{11}x_1+a_{12} x_2+\dots +a_{1n} x_n = b_1\\a_{21} x_1 +a_{22} x_2 + \dots + a_{2n} x_n = b_2\\\quad \vdots\\a_{m1} x_1+a_{m2} x_2+\dots + a_{mn}x_n = b_m\end{cases}.\end{align*}

Aquí de nuevo los a_{ij} y los b_i son escalares dados. Resolver un sistema de ecuaciones lineales consiste en describir todos los posibles valores que pueden tener x_1,\ldots,x_n de modo que todas las ecuaciones anteriores se satisfagan simultáneamente.

La notación que usamos no es mera coincidencia y nos permite describir de manera mucho más concisa el sistema: Si X es un vector columna con entradas x_1, \dots, x_n, A es la matriz en M_{m,n}(F) con entradas [a_{ij}] y b es un vector columna en F^m con entradas b_1, \dots, b_m entonces el sistema se reescribe como

    \begin{align*}AX=b.\end{align*}

Puedes verificar esto usando la definición de A como transformación lineal y comparando los vectores en ambos lados de la igualdad entrada a entrada. Resolver el sistema se traduce entonces a responder cómo son todos los vectores X en F^n que satisfacen la igualdad anterior.

Ejemplo. A continuación tenemos un sistema de ecuaciones en tres variables (o incógnitas) x_1, x_2 y x_3:

    \begin{align*}\begin{cases}3x_1-2x_2+7x_3&=5\\4x_1+3x_3&=7\\2x_1+x_2-7x_3&=-1\\-x_1+3x_2&=8\end{cases}.\end{align*}

Si tomamos al vector b=\begin{pmatrix} 5 \\ 7 \\ -1 \\8 \end{pmatrix} en \mathbb{R}^4, al vector de incógnitas X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} y a la matriz

    \[A=\begin{pmatrix} 3 & -2 & 7\\ 4 & 0 & 3 \\ 2 & 1 & -7 \\ -1 & 3 & 0\end{pmatrix},\]

entonces el sistema de ecuaciones lineales consiste exactamente en determinar aquellos vectores X en \mathbb{R}^3 tales que

    \[AX=b.\]

\square

También podríamos describir nuestro sistema en términos solo de vectores. Recordando un resultado visto en la entrada de producto de matrices, si C_1, \dots, C_n son las columnas de A, vistos como vectores columna en F^{m}, el sistema es equivalente a

    \begin{align*}x_1 C_1+x_2 C_2 +\dots +x_n C_n=b.\end{align*}

Sistemas de ecuaciones lineales homogéneos

Hay un tipo de sistemas de ecuaciones lineales muy especiales: aquellos en los que b=0. Son tan importantes, que tienen un nombre especial.

Definición.

  1. El sistema de ecuaciones lineales AX=b se dice homogéneo si b=0 (es decir si b_1= b_2=\dots= b_m=0).
  2. Dado un sistema AX=b, el sistema lineal homogéneo asociado es el sistema AX=0.

Así, un sistema es homogéneo si es de la forma AX=0 para alguna matriz A.

Ejemplo. Considera el siguiente sistema de ecuaciones lineales:

    \begin{align*}\begin{cases}2x+3y-z&=-1\\5x+8z&=0\\-x+y&=1.\end{cases}\end{align*}

Este es un sistema de ecuaciones que en representación matricial se ve así:

    \begin{align*}\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =\begin{pmatrix} -1 \\ 0 \\ 1\end{pmatrix}.\end{align*}

Como el vector en el lado derecho de la igualdad no es el vector cero, entonces este no es un sistema homogéneo. Sin embargo, tiene asociado el siguiente sistema lineal homogéneo:

    \begin{align*}\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}.\end{align*}

\square

Para la resolución de sistemas lineales en general, el sistema homogéneo asociado juega un papel crucial gracias al siguiente resultado, que nos dice esencialmente que para resolver un sistema AX=b basta con encontrar un vector solución X_0 y resolver el sistema homogéneo asociado.

Proposición. (Principio de superposición) Sea A\in M_{m,n}(F) y b\in F^{m}. Sea \mathcal{S}\subset F^{n} el conjunto de soluciones del sistema homogéneo asociado AX=0. Si el sistema AX=b tiene una solución X_0, entonces el conjunto de soluciones del sistema AX=b no es más que

    \begin{align*}X_0+\mathcal{S}= \lbrace X_0 +s\mid s\in \mathcal{S} \rbrace.\end{align*}

Demostración: Por hipótesis, AX_0=b. Ahora al sustituir, AX=b si y sólo si AX=A X_0, o bien A(X-X_0)=0. Es decir, un vector X es solución de AX=b si y sólo si X-X_0 es solución de AY=0, de otra manera, si y sólo si X-X_0\in \mathcal{S}. Pero esto último es equivalente a decir que existe s\in \mathcal{S} tal que X-X_0=s, luego X= X_0 +s\in X_0 +\mathcal{S}. Esto prueba el resultado.

\square

Consistencia de sistemas lineales

Definición. Un sistema lineal es dicho consistente si tiene al menos una solución. Se le llama inconsistente si no es consistente (es decir, si no existe una solución).

Presentamos una última definición para esta entrada.

Definición.

  1. Dos sistemas lineales se dicen equivalentes si tienen el mismo conjunto de soluciones
  2. Sean A y B dos matrices del mismo tamaño. Si los sistemas AX=0 y BX=0 son equivalentes, escribiremos A\sim B.

Ejemplo. Un ejemplo clásico de un sistema inconsistente es

    \begin{align*} \begin{cases} x_1=0\\x_1=1\end{cases}\end{align*}

o bien

    \begin{align*}\begin{cases}x_1 -2x_2=1\\2 x_2-x_1=0\end{cases}.\end{align*}

\square

Observación. Observamos que todo sistema homogéneo siempre es consistente, ya que el vector cero (cuyas coordenadas son todas cero) satisface el sistema. A esta solución la conocemos como solución trivial. Se sigue de la proposición que un sistema consistente AX=b tiene una única solución si y sólo si el sistema homogéneo asociado tiene como única solución la solución trival.

Más adelante

El principio de superposicion dice que para entender las soluciones de los sistemas lineales de la forma AX=b, basta con entender a los homogéneos, es decir, los de la forma AX=0.

Nuestro siguiente paso será ver cómo podemos entender las soluciones de los sistemas lineales homogéneos. Para ello, tenemos que hablar de los sistemas que corresponden a matrices en forma escalonada reducida. La ventaja de estos sistemas es que sus soluciones son muy fáciles de entender, y para cualquier sistema de ecuaciones AX=0, hay uno de la forma A_{red}X=0, con A_{red} una matriz escalonada reducida, y equivalente a A.

Más adelante, ya que tengamos a nuestra disposición herramientas de determinantes, hablaremos de otra forma en la que se pueden resolver sistemas de ecuaciones lineales usando la regla de Cramer.

Tarea moral

  • Muestra que el sistema

        \begin{align*}\begin{cases}x_1 -2x_2=1\\2 x_2-x_1=0\end{cases}.\end{align*}


    es inconsistente. Para ello, puedes proceder por contradicción, suponiendo que existe una solución.
  • Rescribe el primer ejemplo de sistemas de ecuaciones lineales en términos de vectores.
  • Sea b un vector en F^n y I_n la matriz identidad en M_n(F). ¿Cómo se ve de manera explícita el sistema de ecuaciones (2I_n)X=b? ¿Cuáles son todas sus soluciones?
  • Sean A,B matrices de tamaño n\times n tales que el sistema ABX=0 solo tiene como solución la solución trivial. Demuestre que el sistema BX=0 también tiene como única solución a la solución trivial.
  • Sea A\in M_2(\mathbb{C}) y considere el sistema homogéneo AX=0. Demuestre que son equivalentes:
    1. El sistema tiene una única solución, la solución trivial.
    2. A es invertible.

Álgebra Lineal I: Problemas de sistemas de ecuaciones e inversas de matrices

Introducción

En esta entrada resolveremos problemas relacionados con el uso del método de reducción gaussiana para resolver sistemas de ecuaciones y encontrar inversas de matrices.

Problemas

Problema. Sea A una matriz de tamaño m\times n y sean b y c dos vectores en \mathbb{R}^{m} tales que AX=b tiene una única solución y el sistema AX=c no tiene solución. Explica por qué tiene que ser cierto que m>n.

Solución. Dado que el sistema AX=b es consistente, usando el teorema de existencia y unicidad podemos concluir que

  1. \left(A'\vert b'\right) no tiene pivotes en la última columna,
  2. A' tiene pivotes en todas sus columnas.

Sin embargo, sabemos que el sistema AX=c no tiene solución. Otra vez por el teorema de existencia y unicidad, esto nos implica que \left(A'\vert c'\right) tiene un pivote en la última columna. Sin embargo, ya sabíamos que A' tiene pivotes en todas sus columnas, pero aún así hay espacio en \left(A'\vert c'\right) para un pivote más, es decir, nos sobra espacio hasta abajo por lo que necesariamente tenemos al menos un renglón más que el número de columnas. Es decir m\geq n+1, y por lo tanto m>n.

\square

Problema. Determina si existen reales w, x, y y z tales que las matrices

    \[\begin{pmatrix} x & 2\\ y & 1 \end{pmatrix}\]

y

    \[\begin{pmatrix} 5 & -2 \\ z & w \end{pmatrix}\]

sean inversas la una de la otra.

Solución. En una entrada anterior mostramos que para que dos matrices cuadradas A y B del mismo tamaño sean inversas, basta con mostrar que AB=I. De esta forma, haciendo el producto tenemos que el enunciado es equivalente a

    \begin{align*}\begin{pmatrix} 5x+2z & -2x+2w \\ 5y+z & -2y+w \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}.\end{align*}

Es decir, tenemos un sistema lineal

    \begin{align*}\begin{cases}5x+2z&=1\\-2x+2w&=0\\5y+z&=0\\-2y+w&=1.\end{cases}\end{align*}

Este es un sistema lineal de la forma AX=b, donde

    \[A=\begin{pmatrix} 5 & 0 & 2 & 0 \\ -2 & 0 & 0 & 2 \\ 0 & 5 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}\]

y

    \[b=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.\]

Para determinar si tiene solución, aplicamos reducción gaussiana a la matriz (A|b). En los siguientes pasos estamos aplicando una o más operaciones elementales.

    \begin{align*}&\begin{pmatrix}5 & 0 & 2 & 0 & 1 \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\\to &\begin{pmatrix}1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ -2 & 0 & 0 & 2 & 0 \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\\to & \begin{pmatrix}1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 5 & 1 & 0 & 0 \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix}\\\to & \begin{pmatrix}1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & -2 & 0 & 1 & 1 \end{pmatrix} \\\to & \begin{pmatrix}1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & \frac{4}{5} & 2 & \frac{2}{5} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix} \\\to & \begin{pmatrix}1 & 0 & \frac{2}{5} & 0 & \frac{1}{5} \\ 0 & 1 & \frac{1}{5} & 0 & 0 \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & \frac{2}{5} & 1 & 1 \end{pmatrix}\\\to & \begin{pmatrix}1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & -\frac{1}{10} \\ 0 & 0 & 1 & \frac{5}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{4}{5} \end{pmatrix}\\\to & \begin{pmatrix}1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & \frac{5}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}\end{align*}

Ya encontramos la forma escalonada reducida (A'|b') de (A|b). La última columna de (A'|b') tiene un pivote (el de la última fila). De esta forma, el sistema de ecuaciones no tiene solución.

\square

En la práctica, se pueden usar herramientas tecnológicas para para resolver algunos problemas numéricos concretos. Sin embargo, es importante tener un sólido conocimiento teórico para saber cómo aprovecharlas.

Problema. Determina si las siguientes matrices son invertibles. En caso de serlo, encuentra la inversa.

    \begin{align*}A&=\begin{pmatrix} -1 & 1 & 3 \\ 0 & 1 & 5 \\ 7 & 3 & 2 \end{pmatrix}\\B&=\begin{pmatrix}1 & 5 & -1 & 2 \\ -1 & 3 & 1 & 2 \\ 3 & 4 & 1 & -2 \\ -3 & 4 & 2 & 6 \end{pmatrix}.\end{align*}

Solución. Usando la calculadora de forma escalonada reducida de eMathHelp, obtenemos que la forma escalonada reducida de A y B son, respectivamente

    \begin{align*}A_{red}&=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\\B_{red}&=\begin{pmatrix}1 & 0 & 0 & -\frac{9}{8}\\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{5}{8} \\ 0 & 0 & 0 & 0 \end{pmatrix}.\end{align*}

Por uno de nuestros teoremas de caracterización, para que una matriz cuadrada sea invertible debe de suceder que su forma escalonada reducida sea la identidad. Esto nos dice que A sí es invertible, pero B no.

Para encontrar la inversa de A, consideramos la matriz extendida (A|I_3), y a ella le aplicamos reducción gaussiana. Usamos de nuevo la calculadora de eMathHelp para obtener

    \begin{align*}(A_{red}|X)=\begin{pmatrix}1 & 0 & 0 & \frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\0 & 1 & 0 & \frac{35}{27} & - \frac{23}{27} & \frac{5}{27} \\0 & 0 & 1 & \frac{7}{27} & \frac{10}{27} & - \frac{1}{27}\end{pmatrix}.\end{align*}

De aquí obtenemos que la inversa de A es

    \begin{align*}A^{-1}=\begin{pmatrix} \frac{13}{27} & \frac{7}{27} & \frac{2}{27} \\ \frac{35}{27} & - \frac{23}{27} & \frac{5}{27} \\ \frac{7}{27} & \frac{10}{27} & - \frac{1}{27}\end{pmatrix}.\end{align*}

\square

Finalmente, hay algunos problemas en los que no es posible aplicar herramientas digitales, o por lo menos no es directo cómo hacerlo. Esto sucede, por ejemplo, cuando en un problema las dimensiones o entradas de una matriz son variables.

Problema. Sea a un número real. Determina la inversa de la siguiente matriz en M_{n}(\mathbb{R}):

    \[A=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ a & 1 & 0 & \cdots & 0 & 0 \\ a^2 & a & 1 & \cdots & 0 & 0 \\  & \vdots & & \ddots &  & \vdots \\ a^{n-2} & a^{n-3} & a^{n-4} & \cdots & 1 & 0 \\a^{n-1} & a^{n-2} & a^{n-3} & \cdots & a & 1 \end{pmatrix}.\]

Solución. Recordemos que para obtener la inversa de una matriz cuadrada A, si es que existe, se puede aplicar a la matriz identidad las mismas operaciones elementales que se le apliquen a A para llevarla a forma escalonada reducida.

¿Qué operaciones necesitamos hacer para llevar a A a su forma escalonada reducida? La esquina (1,1) ya es un pivote, y con transvecciones de factores a, a^2,\ldots, a^{n-1} podemos hacer 0 al resto de las entradas en la columna 1.

Tras esto, la entrada (2,2) es ahora pivote de la segunda fila, y con transvecciones de factores a,a^2,\ldots, a^{n-2} podemos hacer 0 al resto de las entradas en la columna 2. Siguiendo este procedimiento, llevamos a A a su forma escalonada reducida. Esto puede demostrar formalmente usando inducción.

Ahora veamos qué sucede si aplicamos estas mismas operaciones a la matriz identidad. Si aplicamos las mismas operaciones que arreglan la primer columna de A, pero a la matriz identidad, obtenemos

    \[\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ -a^2 & 0 & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ -a^{n-2} & 0 & 0 & \cdots & 1 & 0 \\-a^{n-1} & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.\]

Si ahora aplicamos las operaciones que arreglan la segunda columna de A, obtenemos

    \[\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & -a^{n-3} & 0 & \cdots & 1 & 0 \\0 & -a^{n-2} & 0 & \cdots & 0 & 1 \end{pmatrix}.\]

Continuando de esta manera, en cada columna sólo nos quedará un 1 y un -a. Esto puede probarse formalmente de manera inductiva. Al final, obtenemos la matriz

    \[B=\begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -a & 1 & 0 & \cdots & 0 & 0 \\ 0 & -a & 1 & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\0 & 0 & 0 & \cdots & -a & 1 \end{pmatrix},\]

en donde la diagonal principal consiste de puros unos, y la diagonal debajo de ella consiste de puras entradas -a.

Hay dos formas de proceder para dar una demostración formal que esta matriz encontrada es la inversa de A. La primera es completar las demostraciones inductivas que mencionamos. La segunda es tomar lo que hicimos arriba como una exploración del problema y ahora realizar de manera explícita el producto AB o el producto BA.

\square