Archivo de la etiqueta: producto de matrices

Seminario de Resolución de Problemas: El teorema espectral y matrices positivas

Introducción

En esta entrada hablaremos de matrices simétricas y de matrices positivas. Nos enfocaremos en el caso en el que sus entradas sean números reales. Ambos tipos de matrices son fundamentales en la teoría de álgebra lineal. Tanto para las matrices simétricas como para las positivas hay resultados de caracterización que podemos utilizar en varios problemas matemáticos.

El teorema espectral para matrices simétricas reales

Si A es una matriz de m\times n, su transpuesta ^tA es la matriz de n\times m que se obtiene de reflejar a las entradas de A en su diagonal principal. Otra forma de decirlo es que si en términos de entradas tenemos A=[a_{ij}], entonces ^tA=[a_{ji}]. Una matriz y su transpuesta comparten muchas propiedades, como su determinante, su polinomio característico, su rango, sus eigenvalores, etc.

Decimos que una matriz es simétrica si es igual a su transpuesta. Una matriz es ortogonal si es invertible y ^tA = A^{-1}. Las matrices simétricas y ortogonales con entradas reales son muy importantes y cumplen propiedades bonitas.

Teorema (teorema espectral). Si A es una matriz de n\times n con entradas reales y simétrica, entonces:

  • Sus eigenvalores \lambda_1,\ldots,\lambda_n (contando multiplicidades), son todos reales.
  • Existe una matriz ortogonal P de n\times n y con entradas reales tal que si tomamos a D la matriz diagonal de n\times n cuyas entradas en la diagonal principal son \lambda_1,\ldots,\lambda_n, entonces

        \[A=P^{-1}DP.\]

No todas las matrices se pueden diagonalizar. Cuando una matriz sí se puede diagonalizar, entonces algunas operaciones se hacen más sencillas. Por ejemplo si A=P^{-1}DP como en el teorema anterior, entonces

    \begin{align*}A^2&=(P^{-1}DP)(P^{-1}DP)\\&=P^{-1}DDP\\&=P^{-1}D^2P,\end{align*}

y de manera inductiva se puede probar que A^k=P^{-1}D^kP. Elevar la matriz D a la k-ésima potencia es sencillo, pues como es una matriz diagonal, su k-ésima potencia consiste simplemente en elevar cada una de las entradas en su diagonal a la k.

Problema. Sea A una matriz de n\times n simétrica y de entradas reales. Muestra que si A^k = O_n para algún entero positivo k, entonces A=O_n.

Sugerencia pre-solución. La discusión anterior te permite enunciar la hipótesis en términos de los eigenvalores de A. Modifica el problema a demostrar que todos ellos son cero.

Solución. Como A es simétrica y de entradas reales, entonces sus eigenvalores \lambda_1,\ldots, \lambda_n son reales y es diagonalizable. Digamos que su diagonalización es P^{-1} D P. Tenemos que

    \[O_n = A^k = P^{-1} D^k P.\]

Multiplicando por la matriz P a la izquierda, y la matriz P^{-1} a la derecha, tenemos que D^k=O_n. Las entradas de D^k son \lambda_1^k,\ldots,\lambda_n^k, y la igualdad anterior muestra que todos estos números son iguales a cero. De este modo,

    \[\lambda_1=\ldots=\lambda_n=0.\]

Concluimos que D=O_n, y que por lo tanto A=P^{-1} O_n P = O_n.

\square

Veamos ahora un bello problema que motiva una fórmula para los números de Fibonacci desde la teoría del álgebra lineal.

Problema. Toma la matriz

    \[A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.\]

Calcula las primeras potencias de A a mano. Conjetura y muestra cómo es A^n en términos de la sucesión de Fibonacci. A partir de esto, encuentra una fórmula para el n-ésimo término de la sucesión de Fibonacci.

Sugerencia pre-solución. Para empezar, haz las primeras potencias y busca un patrón. Luego, para la demostración de esa parte, procede por inducción. Hay varias formas de escribir a la sucesión de Fibonacci, usa una notación que sea cómoda.

Solución. Al calcular las primeras potencias de la matriz A obtenemos:

    \begin{align*}A&=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\\A^2&=\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},\\A^3&=\begin{pmatrix} 1 & 2 \\  2& 3 \end{pmatrix},\\A^4&=\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix},\\A^5&=\begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}.\end{align*}

Al parecer, en las entradas de A van apareciendo los números de Fibonacci. Seamos más concretos. Definimos F_0=0, F_1=1 y para n\geq 0 definimos

    \[F_{n+2}=F_{n}+F_{n+1}.\]

La conjetura es que para todo entero n\geq 1, se tiene que

    \[A^n=\begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1}\end{pmatrix}.\]

Esto se puede probar por inducción. Arriba ya hicimos el caso n=1. Supongamos la conjetura cierta hasta un entero n dado, y consideremos la matriz A^{n+1}. Tenemos haciendo el producto de matrices, usando la hipótesis inductiva y la recursión de Fibonacci, que

    \begin{align*}A^{n+1}&=AA^n\\& =\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}\\&= \begin{pmatrix} F_n & F_{n+1} \\ F_{n-1} + F_n & F_n + F_{n+1} \end{pmatrix}\\&=\begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}.\end{align*}

Esto termina el argumento inductivo y prueba la conjetura.

Para encontrar una fórmula para los Fibonaccis, lo que haremos ahora es usar el teorema espectral. Esto lo podemos hacer pues la matriz A es de entradas reales y simétrica. Para encontrar la matriz diagonal de la factorización, necesitamos a los eigenvalores de A. Su polinomio característico es

    \[\begin{vmatrix} \lambda & -1 \\ - 1 & \lambda -1 \end{vmatrix}=\lambda^2-\lambda -1.\]

Usando la fórmula cuadrática, las raíces de este polinomio (y por tanto, los eigenvalores de A) son

    \[\frac{1\pm \sqrt{5}}{2}.\]

Por el momento, para simplificar la notación, llamemos \alpha a la de signo más y \beta a la raíz de signo menos. Por el teorema espectral, existe una matriz invertible P de 2\times 2 tal que

    \[A=P^{-1}\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P.\]

De esta forma,

    \[A^n =  P^{-1}\begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} P.\]

Aquí no es tan importante determinar concretamente P ni realizar las cuentas, sino darnos cuenta de que tras realizarlas cada entrada será una combinación lineal de \alpha^n y \beta^n y de que los coeficientes de esta combinación lineal ya no dependen de n, sino sólo de las entradas de P. En particular, la entrada superior derecha de A^n por un lado es F_n, y por otro lado es r\alpha^n + s\beta ^n.

¿Cómo obtenemos los valores de \alpha y \beta? Basta substituir n=1 y n=2 para obtener un sistema de ecuaciones en \alpha y \beta. Aquí abajo usamos que como \alpha y \beta son raíces de x^2-x-1, entonces \alpha^2=\alpha+1, \beta^2=\beta+1 y \alpha+\beta = 1.

    \[\begin{cases}1= F_1 = r \alpha + s \beta \\1= F_2 = r \alpha^2 + s \beta^2 = r + s + 1.\end{cases}\]

De aquí, obtenemos la solución

    \begin{align*}r&=\frac{1}{\alpha-\beta} = \frac{1}{\sqrt{5}}\\s&=-r = -\frac{1}{\sqrt{5}}.\end{align*}

Finalmente, todo este trabajo se resume a que una fórmula para los números de Fibonacci es

    \[F_n=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.\]

\square

Matrices positivas y positivas definidas

Por definición, una matriz simétrica A de n\times n con entradas reales es positiva si para cualquier vector (columna) v en \mathbb{R}^n se tiene que

    \[^t v A v \geq 0.\]

Aquí ^tv es la transposición de v, es decir, el mismo vector, pero como vector fila.

Si además la igualdad se da sólo para el vector v=0, entonces decimos que A es positiva definida. Un ejemplo sencillo de matriz positiva es la matriz A=\begin{pmatrix} 1 & -1 \\ -1 & 1\end{pmatrix}, pues para cualquier vector v=(x,y) se tiene que

    \[^t v A v = x^2-2xy+y^2=(x-y)^2\geq 0.\]

Sin embargo, esta matriz no es positiva definida pues la expresión anterior se anula en vectores no cero como (1,1). Como puedes verificar, un ejemplo de matriz positiva definida es

    \[B=\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.\]

Las matrices reales que son positivas definidas son importantes pues caracterizan todos los productos interiores en \mathbb{R}^n. Una vez que se tiene un producto interior en un espacio vectorial de dimensión finita, se pueden aprovechar muchas de sus propiedades o consecuencias, por ejemplo, la desigualdad de Cauchy-Schwarz o la existencia de bases ortogonales para hacer descomposiciones de Fourier.

Para cuando se quieren resolver problemas, es muy útil conocer varias equivalencias de que una matriz sea positiva.

Equivalencias para matrices positivas

El siguiente resultado enuncia algunas de las equivalencias para que una matriz sea positiva

Teorema. Sea A una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. A es positiva.
  2. Todos los eigenvalores de A son no negativos.
  3. A=B^2 para alguna matriz simétrica B en M_n(\mathbb{R}).
  4. A= {^tC} C para alguna matriz C en M_n(\mathbb{R}).

Hay un resultado análogo para cuando se quiere determinar si una matriz A es positiva definida. En ese caso, los eigenvalores tienen que ser todos positivos. Para los puntos 3 y 4 se necesita además que B y C sean invertibles.

Problema. Sea A una matriz de n\times n con entradas reales, simétrica y positiva. Muestra que si

    \[\text{tr}(A) = n \sqrt[n]{\det(A)},\]

entonces A conmuta con cualquier matriz de n\times n.

Sugerencia pre-solución. Necesitarás usar que matrices similares tienen la misma traza y el mismo determinante, o una versión particular para este problema.

Solución. Las siguientes son propiedades de la traza y el determinante:

  • El determinante de una matriz diagonal es el producto de las entradas en su diagonal.
  • Si tenemos dos matrices similares, entonces tienen la misma traza.

En particular, las hipótesis implican, por el teorema espectral, que A se puede diagonalizar con matrices A=P^{-1} D P, donde D es la matriz diagonal que tiene en su diagonal principal a los eigenvalores \lambda_1,\ldots,\lambda_n de A, y P^{-1} es una matriz invertible. Como A y D son similares, se tiene que

    \begin{align*}\text{tr}(A)=\text{tr}(D)=\lambda_1+\ldots+\lambda_n\\\det(A)=\det(D)=\lambda_1\cdot\ldots\cdot\lambda_n.\end{align*}

Como A es positiva, entonces todos sus eigenvalores son no negativos, así que satisfacen la desigualdad MA-MG:

    \[\frac{\lambda_1+\ldots+\lambda_n}{n} \geq \sqrt[n]{\lambda_1\cdot\ldots\cdot\lambda_n}.\]

Por la última hipótesis del problema, esta desigualdad es de hecho una igualdad. Pero la igualdad en MA-MG se alcanza si y sólo si todos los números son iguales entre sí. Tenemos entonces que todos los eigenvalores son iguales a un cierto valor \lambda, y entonces D=\lambda I_n. Como cualquier múltiplo escalar de la matriz identidad conmuta con cualquier matriz de n\times n, tendríamos entonces que

    \begin{align*}A&=P^{-1}D P \\&=P^{-1}(\lambda I_n) P\\&=(\lambda I_n) (P^{-1}P)\\&=\lambda I_n.\end{align*}

Con esto probamos que A es de hecho un múltiplo de la matriz identidad, y por lo tanto conmuta con cualquier matriz de n\times n.

\square

Más problemas

Puedes encontrar más problemas del teorema espectral, de formas y matrices positivas en la Sección 10.2 y la Sección 10.8 del libro Essential Linear Algebra de Titu Andreescu.

Álgebra Lineal I: Propiedades del polinomio característico

Introducción

En esta entrada continuamos con el estudio de eigenvalores y eigenvectores de matrices y trasformaciones lineales. Para ello, estudiaremos más a profundidad el polinomio característico.

Como recordatorio, en una entrada pasada demostramos que si A es una matriz en M_n(F), entonces la expresión \det (\lambda I_n - A) es un polinomio en \lambda de grado n con coeficientes en F. A partir de ello, definimos el polinomio característico de A como

    \[\chi_A(\lambda)=\det(\lambda I_n - A).\]

En esta entrada probaremos algunas propiedades importantes del polinomio característico de matrices. Además, hablaremos de la multiplicidad algebraica de los eigenvalores. Finalmente enunciaremos sin demostración dos teoremas fundamentales en álgebra lineal: el teorema de caracterización de matrices diagonalizables y el teorema de Cayley-Hamilton.

Las raíces del polinomio característico son los eigenvalores

Ya vimos que las raíces del polinomio característico son los eigenvalores. Pero hay que tener cuidado. Deben ser las raíces que estén en el campo en el cual la matriz esté definida. Veamos un ejemplo más.

Problema. Encuentra el polinomio característico y los eigenvalores de la matriz

    \begin{align*}\begin{pmatrix}0&1&0&0\\2&0&-1&0\\0& 7 & 0 & 6\\0 & 0 & 3 & 0\end{pmatrix}.\end{align*}

Solución. Debemos encontrar las raíces del polinomio dado por el siguiente determinante:

    \begin{align*}\begin{vmatrix}\lambda&-1&0&0\\-2&\lambda&1&0\\0& -7 & \lambda & -6\\0 & 0 & -3 & \lambda\end{vmatrix}.\end{align*}

Haciendo expansión de Laplace en la primer columna, tenemos que este determinante es igual a

    \begin{align*}\lambda\begin{vmatrix}\lambda&1&0\\ -7 & \lambda & -6\\ 0 & -3 & \lambda\end{vmatrix}+2\begin{vmatrix}-1&0&0\\-7 & \lambda & -6\\0 & -3 & \lambda\end{vmatrix}.\end{align*}

Para calcular los determinantes de cada una de las matrices de 3\times 3 podemos aplicar la fórmula por diagonales para obtener:

    \begin{align*}\lambda\begin{vmatrix}\lambda&1&0\\-7 & \lambda & -6\\0 & -3 & \lambda\end{vmatrix}&=\lambda(\lambda^3-18\lambda+7\lambda)\\&=\lambda(\lambda^3-11\lambda)\\&=\lambda^4-11\lambda^2\end{align*}

y

    \begin{align*}2\begin{vmatrix}-1&0&0\\-7 & \lambda & -6\\0 & -3 & \lambda\end{vmatrix}&=2(-\lambda^2+18)\\&=-2\lambda^2+36.\end{align*}

Concluimos que el polinomio característico es

    \begin{align*}\lambda^4-13\lambda^2+36&=(\lambda^2-4)(\lambda^2-9)\\&=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3).\end{align*}

De esta factorización, las raíces del polinomio (y por lo tanto los eigenvalores que buscamos) son -2,2,-3,3.

Si quisiéramos encontrar un eigenvector para, por ejemplo, el eigenvalor -2, tenemos que encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo

    \[(-2I_n-A)X=0.\]

\square

Propiedades del polinomio característico

Veamos ahora algunas propiedades importantes del polinomio característico. El primer resultado habla del polinomio característico de matrices triangulares superiores. Un resultado análogo se cumple para matrices inferiores, y su enunciado y demostración quedan como tarea moral.

Proposición. Si A=[a_{ij}] es una matriz triangular superior en M_n(F), entonces su polinomio característico es

    \[\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).\]

Demostración. Como A es triangular superior, entonces \lambda I_n -A también, y sus entradas diagonales son precisamente \lambda-a_{ii} para i=1,\ldots,n. Como el determinante de una matriz diagonal es el producto de sus entradas en la diagonal, tenemos que

    \[\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).\]

\square

Como el polinomio característico es un determinante, podemos aprovechar otras propiedades de determinantes para obtener otros resultados.

Proposición. Una matriz y su transpuesta tienen el mismo polinomio característico.

Demostración. Sea A una matriz en M_n(F). Una matriz y su transpuesta tienen el mismo determinante. Además, transponer es una transformación lineal. De este modo:

    \begin{align*}\chi_A(\lambda)&=\det(\lambda I_n - A)\\&=\det({^t(\lambda I_n-A)})\\&=\det(\lambda({^tI_n})-{^tA})\\&=\det(\lambda I_n - {^tA})\\&=\chi_{^tA}(\lambda).\end{align*}

\square

Ya antes habíamos mostrado que matrices similares tienen los mismos eigenvalores, pero que dos polinomios tengan las mismas raíces no necesariamente implica que sean iguales. Por ejemplo, los polinomios

    \[(x-1)^2(x+1) \quad \text{y} \quad (x+1)^2(x-1)\]

tienen las mismas raíces, pero no son iguales.

De esta forma, el siguiente resultado es más fuerte de lo que ya habíamos demostrado antes.

Proposición. Sean A y P matrices en M_n(F) con P invertible. Entonces A y P^{-1}AP tienen el mismo polinomio característico.

Demostración. El resultado se sigue de la siguiente cadena de igualdades, en donde usamos que \det(P)\det(P^{-1})=1 y que el determinante es multiplicativo:

    \begin{align*}\chi_{P^{-1}AP}(\lambda) &= \det(P) \chi_{P^{-1}AP}(\lambda) \det(P)^{-1}\\&=\det(P) \det(\lambda I_n - P^{-1}AP) \det(P^{-1})\\&=\det(P(\lambda I_n - P^{-1}AP)P^{-1})\\&=\det(\lambda PP^{-1}-PP^{-1}APP^{-1})\\&=\det(\lambda I_n - A)\\&=\chi_{A}(\lambda)\end{align*}

\square

Ten cuidado. El determinante es multiplicativo, pero el polinomio característico no es multiplicativo. Esto es evidente por el siguiente argumento. Si A y B son matrices en M_n(F), entonces \chi_A(\lambda) y \chi_B(\lambda) son cada uno polinomios de grado n, así que su producto es un polinomio de grado 2n, que por lo tanto no puede ser igual al polinomio característico \chi_{AB}(\lambda) pues este es de grado n. Así mismo, \chi_{A^2}(\lambda) no es \chi_{A}(\lambda)^2.

Una última propiedad que nos interesa es mostrar que el determinante de una matriz y su traza aparecen en los coeficientes del polinomio característico.

Teorema. Sea A una matriz en M_n(F) y \chi_A(\lambda) su polinomio característico. Entonces \chi_{A}(\lambda) es de la forma

    \[\lambda^n-(\text{tr} A) \lambda^{n-1}+\ldots+(-1)^n \det A.\]

Demostración. Tenemos que mostrar tres cosas:

  • El polinomio \chi_{A} es mónico, es decir, tiene coeficiente principal 1,
  • que el coeficiente del término de grado n-1 es \text{tr} A y
  • el coeficiente libre es (-1)^n \det A.

El coeficiente libre de un polinomio es su evaluación en cero. Usando la homogeneidad del determinante, dicho coeficiente es:

    \begin{align*}\chi_A(0)&=\det(0\cdot I_n-A)\\&=\det(-A)\\&=(-1)^n\det(A).\end{align*}

Esto muestra el tercer punto.

Para el coeficiente del término de grado n-1 y el coeficiente principal analicemos con más detalle la fórmula del determinante

    \begin{align*}\begin{vmatrix}\lambda - a_{11} & -a_{12} & \ldots & -a_{1n}\\-a_{21} & \lambda - a_{22} & \ldots & -a_{1n}\\\vdots & & \ddots & \\-a_{n1} & -a_{n2} & \ldots & \lambda - a_{nn}\end{vmatrix}\end{align*}


en términos de permutaciones.

Como discutimos anteriormente, la única forma de obtener un término de grado n es cuando elegimos a la permutación identidad. Pero esto también es cierto para términos de grado n-1, pues si no elegimos a la identidad, entonces la permutación elige por lo menos dos entradas fuera de la diagonal, y entonces el grado del producto de entradas correspondiente es a lo más n-2.

De este modo, los únicos términos de grado n y n-1 vienen del producto

    \[(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).\]

El único término de grado n viene de elegir \lambda en todos los factores, y se obtiene el sumando \lambda^n, lo cual muestra que el polinomio es mónico.

Los únicos términos de grado n-1 se obtienen de elegir \lambda en n-1 factores y un término del estilo -a_{ii}. Al considerar todas las opciones, el término de grado n-1 es

    \[-(a_{11}+a_{22}+\ldots+a_{nn})\lambda^{n-1}=-(\text{tr} A) \lambda^{n-1},\]

que era lo último que debíamos mostrar.

\square

Ejemplo. El teorema anterior muestra que si A es una matriz en M_2(F), es decir, de 2\times 2, entonces

    \[\chi_A(\lambda)=\lambda^2 - (\text{tr}A) \lambda +\det A.\]

De manera explícita en términos de las entradas tendríamos entonces que si A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}, entonces su polinomio característico es

    \[\lambda^2-(a+d)\lambda+(ad-bc).\]

Como ejemplo, si A=\begin{pmatrix} 5 & 2 \\ -8 & -3 \end{pmatrix}, entonces su polinomio característico es

    \[\lambda^2 -2\lambda +1=(\lambda-1)^2.\]

Su único eigenvalor sería entonces 1.

\square

Suma y producto de eigenvalores de matrices complejas

A veces queremos referirnos al conjunto de todos los eigenvalores de una matriz.

Definición. Para A una matriz en M_n(F), el espectro de A es el conjunto de eigenvalores de A. Lo denotamos por \text{spec} (A)

Tenemos una definición análoga para el espectro de una transformación lineal. Esa definición da un poco de intuición de por qué los teoremas de diagonalización de matrices se llaman teoremas espectrales. La siguiente definición habla de un sentido en el cual un eigenvalor «se repite».

Definición. Sea A una matriz en M_n(F) y \lambda un eigenvalor de A. La multiplicidad algebraica de \lambda es el mayor entero m_{\lambda} tal que (x-\lambda)^{m_\lambda} divide a \chi_A(x).

Cuando estamos en \mathbb{C}, por el teorema fundamental del álgebra todo polinomio de grado n se puede factorizar en exactamente n términos lineales. Además, los polinomios característicos son mónicos. De este modo, si tenemos una matriz A en M_n(\mathbb{C}), su polinomio característico se puede factorizar como sigue:

    \[\chi_A(\lambda) = \prod_{j=1}^n (\lambda-\lambda_j),\]

en donde \lambda_1,\ldots,\lambda_n son eigenvalores de A, no necesariamente distintos, pero en donde cada eigenvalor aparece en tantos términos como su multiplicidad algebraica.

Desarrollando parcialmente el producto del lado derecho, tenemos que el coeficiente de \lambda^{n-1} es

    \[-(\lambda_1+\ldots+\lambda_n)\]

y que el coeficiente libre es

    \[(-1)^n\lambda_1\cdot\ldots\cdot\lambda_n.\]

Combinando este resultado con el de la sección anterior y agrupando eigenvalores por multiplicidad, se demuestra el siguiente resultado importante. Los detalles de la demostración quedan como tarea moral.

Teorema. Sea A una matriz en M_n(\mathbb{C})

  • La traza A es igual a la suma de los eigenvalores, contando multiplicidades algebraicas, es decir:

        \[\text{tr} A = \sum_{\lambda \in \text{spec}(A)} m_{\lambda} \lambda.\]

  • El determinante de A es igual al producto de los eigenvalores, contando multiplicidades algebraicas, es decir:

        \[\det A = \prod_{\lambda \in \text{spec} (A)} \lambda^{m_{\lambda}}.\]

Veamos un problema en donde se usa este teorema.

Problema. Sea A una matriz en M_n(\mathbb{C}) tal que A^2-4A+3I_n=0. Muestra que el determinante de A es una potencia de 3.

Solución. Sea \lambda un eigenvalor de A y v un eigenvector para \lambda. Tenemos que

    \[A^2v=A(\lambda v) = \lambda(Av)=\lambda^2 v.\]

De esta forma, tendríamos que

    \begin{align*}0&=(A^2-4A+3I_n)v\\&=(\lambda^2 v - 4\lambda v + 3 v)\\&=(\lambda^2-4\lambda+3) v.\end{align*}

Como v no es el vector 0, debe suceder que \lambda^2-4\lambda+3=0. Como \lambda^2-4\lambda+3 = (\lambda-3)(\lambda-1), entonces \lambda=1 ó \lambda=3. Con esto concluimos que los únicos posibles eigenvectores de A son 1 y 3.

Como A es una matriz en \mathbb{C}, tenemos entonces que su polinomio característico es de la forma (x-1)^a(x-3)^b con a y b enteros no negativos tales que a+b=n. Pero entonces por el teorema de producto de eigenvalores, tenemos que el determinante es 1^a\cdot 3^b=3^b, con lo que queda demostrado que es una potencia de 3.

\square

Dos teoremas fundamentales de álgebra lineal (opcional)

Tenemos todo lo necesario para enunciar dos resultados de álgebra lineal. Sin embargo, las demostraciones de estos resultados requieren de más teoría, y se ven en un siguiente curso. No los demostraremos ni los usaremos en el resto de este curso, pero te pueden servir para anticipar el tipo de resultados que verás al continuar tu formación en álgebra lineal.

El primer resultado fundamental es una caracterización de las matrices que pueden diagonalizarse. Para ello necesitamos una definición adicional. Hay otro sentido en el cual un eigenvalor \lambda de una matriz A puede repetirse.

Definición. Sea A una matriz en M_n(F) y \lambda un eigenvalor de A. La multiplicidad geométrica de \lambda es la dimensión del kernel de la matriz \lambda I_n -A pensada como transformación lineal.

En estos términos, el primer teorema al que nos referimos queda enunciado como sigue.

Teorema. Una matriz A en M_n(F) es diagonalizable si y sólo si su polinomio característico \chi_A(\lambda) se puede factorizar en términos lineales en F[\lambda] y además, para cada eigenvalor, su multiplicidad algebraica es igual a su multiplicidad geométrica.

Ejemplo. La matriz

    \[A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\]

tiene como polinomio característico a \chi_A(\lambda)=\lambda^2+1. Este polinomio no se puede factorizar en \mathbb{R}[x], así que A no es diagonalizable con matrices de entradas reales.

Sin embargo, en \mathbb{C} tenemos la factorización en términos lineales \lambda^2+1=(\lambda+i)(\lambda-i), que dice que i y -i son eigenvalores de multiplicidad algebraica 1. Se puede mostrar que la multiplicidad geométrica también es 1. Así, A sí es diagonalizable con matrices de entradas complejas.

\square

El segundo resultado fundamental dice que «cualquier matriz se anula en su polinomio característico». Para definir correctamente esto, tenemos que decir qué quiere decir evaluar un polinomio en una matriz. La definición es más o menos natural.

Definición. Si A es una matriz en M_n(F) y p es un polinomio en F[\lambda] de la forma

    \[p(\lambda)=a_0+a_1\lambda+a_2\lambda^2+\ldots+a_n\lambda^n,\]

definimos a la matriz p(A) como la matriz

    \[a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.\]

En estos términos, el resultado queda enunciado como sigue.

Teorema (Cayley-Hamilton). Si A es una matriz en M_n(F) y \chi_A(x) es su polinomio característico, entonces

    \[\chi_A(A)=O_n.\]

Ejemplo. Tomemos de nuevo a la matriz

    \[A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\]

del ejemplo anterior. Su polinomio característico es x^2+1. En efecto, verificamos que se cumple el teorema de Cayley-Hamilton pues:

    \begin{align*}A^2+I_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\&=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\&=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Enuncia y demuestra cómo es el polinomio característico de una matriz triangular inferior.
  • Completa los detalles de la demostración del teorema de suma y producto de eigenvalores. Úsalo para encontrar la suma y producto (con multiplicidades) de los eigenvalores de la matriz

        \[\begin{pmatrix}5 & 0 & -1 & 2 \\ 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 5\\ 0 & 2 & 4 & 0 \end{pmatrix}.\]

  • Sea A una matriz en M_n(F). ¿Cómo es el polinomio característico de -A en términos del polinomio característico de A?
  • Tomemos A una matriz en M_n(F) y k un entero positivo. Muestra que si \lambda es un eigenvalor de la matriz A, entonces \lambda^k es un eigenvalor de la matriz A^k.

De la sección opcional:

  • Demuestra, haciendo todas las cuentas, el caso particular del teorema de Cayley-Hamilton para matrices de 2\times 2.
  • Ya sabemos calcular el polinomio característico de matrices diagonales. Muestra el teorema de Cayley-Hamilton en este caso particular.
  • Las matrices diagonales trivialmente son diagonalizables. Muestra que la multiplicidad algebraica de sus eigenvalores en efecto coincide con la multiplicidad geométrica.

Álgebra Lineal I: Determinantes de matrices y transformaciones lineales

Introducción

En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.

Determinantes de transformaciones lineales

Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.

Si tomamos un espacio vectorial V de dimensión finita n\geq 1 sobre un campo F, una transformación lineal T:V\to V y una forma n-lineal f:V^n\to F, se puede mostrar que la transformación

    \[T_f:V^n\to F\]

dada por

    \[T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))\]

también es una forma n-lineal. Además, se puede mostrar que si f es alternante, entonces T_f también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.

Teorema. Sea V un espacio vectorial de dimensión finita n\geq 1 sobre el campo F. Para cualquier transformación lineal T:V\to V existe un único escalar \det T en F tal que

    \[f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)\]

para cualquier forma n-lineal alternante f:V^n\to F y cualquier elección x_1,\ldots,x_n de vectores en V.

Demostración. Fijemos una base B=(b_1,\ldots,b_n) cualquiera de V. Llamemos g a la forma n-lineal alternante \det_{(b_1,\ldots,b_n)}. Por la discusión de arriba, la asignación T_g:V^n\to F dada por

    \[(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))\]

es una forma n-lineal y alternante.

Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que

    \[T_g = T_g(b_1,\ldots,b_n) \cdot g.\]

Afirmamos que \det T:= T_g(b_1,\ldots, b_n) es el escalar que estamos buscando.

En efecto, para cualquier otra forma n-lineal alternante f, tenemos por el mismo teorema que

    \[f=f(b_1,\ldots,b_n) \cdot g.\]

Usando la linealidad de T y la igualdad anterior, se tiene que

    \begin{align*}T_f &= f(b_1,\ldots,b_n)\cdot T_g\\&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\&= \det T \cdot f.\end{align*}

Con esto se prueba que \det T funciona para cualquier forma lineal f. La unicidad sale eligiendo (x_1,\ldots,x_n)=(b_1,\ldots,b_n) y f=g en el enunciado del teorema, pues esto forza a que

    \[\det T = g(T(b_1),\ldots,T(b_n)).\]

\square

Ahora sí, estamos listos para definir el determinante de una transformación lineal.

Definición. El escalar \det T del teorema anterior es el determinante de la transformación lineal T.

Para obtener el valor de \det T, podemos entonces simplemente fijar una base B=(b_1,\ldots,b_n) y el determinante estará dado por

    \[\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).\]

Como el teorema también prueba unicidad, sin importar que base B elijamos este número siempre será el mismo.

Ejemplo. Vamos a encontrar el determinante de la transformación lineal T:\mathbb{R}^3 \to \mathbb{R}^3 dada por

    \[T(x,y,z)=(2z,2y,2x).\]

Para ello, usaremos la base canónica de \mathbb{R}^3. Tenemos que

    \begin{align*}T(1,0,0)&=(0,0,2)=2e_3\\T(0,1,0)&=(0,2,0)=2e_2\\T(0,0,1)&=(2,0,0)=2e_1.\end{align*}

De acuerdo al teorema anterior, podemos encontrar al determinante de T como

    \[\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).\]

Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas 1 y 3 su signo cambia en -1. Usando la 3-linealidad en cada entrada, podemos sacar un factor 2 de cada una. Así, tenemos:

    \begin{align*}\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\&=-8.\end{align*}

Concluimos entonces que el determinante de T es -8.

\square

Ejemplo. Vamos ahora a encontrar el determinante de la transformación T:\mathbb{R}_n[x]\to \mathbb{R}_n[x] que deriva polinomios, es decir, tal que T(p)=p'. Tomemos q_0=1,q_1=x,\ldots,q_n=x^n la base canónica de \mathbb{R}_n[x].

Notemos que, T(1)=0, de modo que los vectores T(1),\ldots,T(x^n) son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que

    \[\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.\]

Concluimos entonces que \det T = 0.

\square

Determinantes de matrices

La expresión

    \[\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))\]

para una transformación lineal T también nos permite poner al determinante en términos de las entradas de la matriz de T con respecto a la base B. Recordemos que dicha matriz A_T=[a_{ij}] tiene en la columna i las coordenadas de b_i en la base B. En otras palabras, para cada i se cumple que

    \[T(v_i)=\sum_{j=1}^n a_{ji}v_i.\]

Usando esta notación, obtenemos que

    \[\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},\]

de manera que podemos expresar a \det T en términos únicamente de su matriz en la base B.

Esto nos motiva a definir el determinante de una matriz en general.

Definición. Para una matriz A en M_n(F) de entradas A=[a_{ij}], el determinante de A es

    \[\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.\]

A \det A también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

    \begin{align*}\det A = \begin{vmatrix}a_{11} & a_{12} & \ldots & a_{1n}\\a_{21} & a_{22} & \ldots & a_{2n}\\\vdots & & \ddots & \vdots\\a_{n1} & a_{n2} & \ldots & a_{nn}.\end{vmatrix}\end{align*}

Ejemplo. Si queremos calcular el determinante de una matriz en M_2(F), digamos

    \[A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},\]

debemos considerar dos permutaciones: la identidad y la transposición (1,2).

La identidad tiene signo 1 y le corresponde el sumando ad. La transposición tiene signo -1 y le corresponde el sumando bc. Así,

    \[\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.\]

\square

Retomando la discusión antes de la definición, tenemos entonces que \det T = \det A_T, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de T depende de la base elegida, pero como vimos, el determinante de T no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.

Teorema. Sean A y P matrices en M_n(F) con P invertible. El determinante de A y el de P^{-1}AP son iguales.

Determinantes de matrices triangulares

Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.

Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.

Solución. En una matriz triangular superior tenemos que a_{ij}=0 si i>j. Vamos a estudiar la expresión

    \[\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.\]

Si una permutación \sigma no es la identidad, entonces hay un entero i que no deja fijo, digamos \sigma(i)\neq i. Tomemos a i como el mayor entero que \sigma no deja fijo. Notemos que \sigma(i) tampoco queda fijo por \sigma pues \sigma(\sigma(i))=\sigma(i) implica \sigma(i)=i, ya que \sigma es biyectiva, y estamos suponiendo \sigma(i)\neq i. Por la maximalidad de i, concluimos que \sigma(i)<i.Entonces el sumando correspondiente a \sigma es 0 pues tiene como factor a la entrada a_{i\sigma(i)}=0.

En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es 1. De esta forma,

    \begin{align*}\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\&=a_{11}\cdot \ldots \cdot a_{nn}.\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que la transformación T_f definida en la entrada es n-lineal y alternante.
  • Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal T:\mathbb{R}^n \to \mathbb{R}^n dada por

        \[T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).\]

  • Calcula por definición el determinante de las matrices

        \[\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}\]

    y

        \[\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.\]

  • Calcula por definición el determinante de la matriz

        \[\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}\]

    y compáralo con el de la matriz de 3\times 3 del inciso anterior. ¿Qué notas?
  • Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.