Archivo de la etiqueta: pitágoras

Álgebra Lineal I: Formas cuadráticas, propiedades, polarización y Gauss

Introducción

En la entrada anterior hablamos acerca de formas bilineales y comenzamos a hablar de formas cuadráticas. Discutimos cómo a partir de estas nociones a la larga podremos hablar de geometría y cálculo en espacios vectoriales. El objetivo de esta entrada es entender mejor a las formas cuadráticas y su relación con formas bilineales.

Lo primero que haremos es demostrar la identidad de polarización, que a grandes rasgos dice que hay una biyección entre las formas bilineales simétricas y las formas cuadráticas. Veremos algunos ejemplos concretos de esta biyección. A partir de ella demostraremos algunas propiedades de formas cuadráticas. Finalmente, hablaremos brevemente de un bello resultado de Gauss que caracteriza las formas cuadráticas en \mathbb{R}^n en términos de formas lineales, de las cuales discutimos mucho cuando hablamos de espacio dual.

Como pequeño recordatorio de la entrada anterior, una forma bilineal de un espacio vectorial V es una transformación b:V\times V \to \mathbb{R} tal que cada que fijamos una coordenada, es lineal en la otra. Esta forma es simétrica si b(x,y)=b(y,x) para cada par de vectores x,y en V. Una forma cuadrática de V es una transformación q:V\to \mathbb{R} tal que q(x)=b(x,x) para alguna forma bilineal b.

Formas cuadráticas y polarización

En la entrada anterior enunciamos el siguiente teorema, que mostraremos ahora.

Teorema (identidad de polarización). Sea q:V\to \mathbb{R} una forma cuadrática. Existe una única forma bilineal b:V\times V \to \mathbb{R} tal que q(x)=b(x,x) para todo vector x. Esta forma bilineal está determinada mediante la identidad de polarización

    \[b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.\]

Demostración. Tomemos una forma cuadrática q de V. Por definición, está inducida por una forma bilineal B de V, es decir, q(x)=B(x,x). Definamos la transformación b mediante

    \[b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.\]

Comencemos probando que b es una transformación bilineal simétrica. Notemos que:

    \begin{align*}b(x,y)&=\frac{q(x+y)-q(x)-q(y)}{2}\\&=\frac{B(x+y,x+y)-B(x,x)-B(y,y)}{2}\\&=\frac{B(x,x)+B(x,y)+B(y,x)+B(y,y)-B(x,x)-B(y,y)}{2}\\&=\frac{B(x,y)+B(y,x)}{2}.\end{align*}

De aquí es muy claro que b es forma bilineal, pues fijando x, set tiene que b(x,y) es combinación lineal de dos formas lineales en y; y fijando y, se tiene que b(x,y) es combinación lineal de dos formas lineales en x. Además, de esta igualdad (o directo de la definición de b) es claro que b(x,y)=b(y,x).

También de esta igualdad obtenemos que

    \[b(x,x)=B(x,x)=q(x).\]

Para mostrar la unicidad, notemos que cualquier forma bilineal simétrica b' tal que b'(x,x)=q(x) debe satisfacer, como en las cuentas que hicimos arriba, que

    \begin{align*}q(x+y)&=b'(x+y,x+y)\\&=q(x)+q(y)+b'(x,y)+b'(y,x)\\&=q(x)+q(y)+2b'(x,y).\end{align*}

De aquí, despejando b', se obtiene que debe tener la forma de b.

\square

El teorema anterior justifica la siguiente definición.

Definición. Dada una forma cuadrática q de V, a la única forma bilineal simétrica b de V tal que q(x)=b(x,x) le llamamos la forma polar de q.

Ejemplo. En el espacio vectorial \mathbb{R}^n, la transformación q:\mathbb{R}^n\to \mathbb{R} dada por

    \[q(x_1,\ldots,x_n)=x_1^2+\ldots+x_n^2.\]

es una forma cuadrática. Su forma polar es la forma bilineal producto punto que manda a x=(x_1,\ldots,x_n) y y=(y_1,\ldots,y_n) a

    \[b(x,y)=x_1y_1+\ldots+x_ny_n.\]

Esto coincide con la construcción dada por la identidad de polarización, ya que

    \begin{align*}q(x+y)-q(x)-q(y)&=\sum_{i=1}^n (x_i+y_i)^2-x_i^2-y_i^2 \\&= \sum_{i=1}^n x_iy_i\end{align*}

\square

Ejemplo. En el espacio vectorial \mathbb{R}[x] de polinomios con coeficientes reales, la transformación Q dada por

    \[Q(p)=p(0)p(1)+p(2)^2\]

es una forma cuadrática. Para encontrar a su forma bilineal polar, usamos la identidad de polarización

    \begin{align*}B(p,q)&=\frac{Q(p+q)-Q(p)-Q(q)}{2}\\&=\frac{(p+q)(0)(p+q)(1)+(p+q)(2)^2-p(0)p(1)-p(2)^2-q(0)q(1)-q(2)^2}{2}\\&=\frac{p(0)q(1)+q(0)p(1)+2p(2)q(2)}{2}\\&=\frac{p(0)q(1)}{2}+\frac{p(1)q(0)}{2}+p(2)q(2).\end{align*}

\square

Propiedades de formas cuadráticas

Si q es una forma cuadrática, x es un vector y c es un real, tenemos que q(cx)=c^2x, pues sale una c por cada una de las coordenadas de la forma bilineal asociada. En particular, q(-x)=q(x).

La identidad de polarización nos permite probar otras propiedades de formas bilineales y formas cuadráticas.

Proposición. Sea q una forma cuadrática en V con forma polar b. Entonces:

  • Para todo par de vectores x y y en V, se tiene que

        \[b(x,y)=\frac{q(x+y)-q(x-y)}{4}.\]

  • (Ley del paralelogramo) Para todo par de vectores x y y en V, se tiene que

        \[q(x+y)+q(x-y)=2(q(x)+q(y)).\]

  • (Teorema de Pitágoras) Para vectores x y y tales que b(x,y)=0, se tiene que

        \[q(x+y)=q(x)+q(y).\]

  • (Diferencia de cuadrados) Para todo par de vectores x y y en V, se tiene que b(x+y,x-y)=q(x)-q(y).

Demostración. Por la identidad de polarización tenemos que

    \[b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2},\]

y como q(y)=q(-y), tenemos también por la identidad de polarización que

    \begin{align*}-b(x,y)&=b(x,-y)\\&=\frac{q(x-y)-q(x)-q(y)}{2}.\end{align*}

Restando la segunda ecuación de la primera, obtenemos la primer propiedad. Sumando ambas obtenemos la ley del paralelogramo.

El teorema de Pitágoras es una consecuencia directa de la identidad de polarización.

La identidad de diferencia de cuadrados es una consecuencia de la primer propiedad aplicada a los vectores x+y y x-y, y de usar que q(2x)=4q(x) y que q(2y)=4q(y).

\square

Forma de las formas cuadráticas

Otra consecuencia de la identidad de polarización es que establece una biyección entre las formas cuadráticas y las formas simétricas bilineales. Esta asociación nos permite decir cómo se ven exactamente las formas cuadráticas en espacios vectoriales de dimensión finita.

Toda forma cuadrática viene de una forma bilineal simétrica. En la entrada anterior, mencionamos que para definir una forma bilineal simétrica en un espacio vectorial V de dimensión n, basta tomar una base \{e_1,\ldots,e_n\} de V y decidir los valores b_{ij} de b(e_i,e_j) para 1\leq i \leq j \leq n. Como b es simétrica, para j<i se tendría que b(e_i,e_j)=b(e_j,e_i), es decir, que b_{ji}=b_{ij}.

De esta forma, para todo vector v en V podemos encontrar el valor de q(v) expresando v en la base \{e_1,\ldots,e_n\}, digamos,

    \[v=a_1e_1+\ldots+a_ne_n,\]

de donde

    \[q(v)=\sum_{i=1}^n b_{ii} a_i^2 + 2 \sum_{1\leq i < j \leq n} b_{ij} a_i a_j.\]

Ejemplo. Toda forma cuadrática en \mathbb{R}^3 se obtiene de elegir reales a,b,c,d,e,f y definir

    \[q(x,y,z)=ax^2+by^2+cz^2+2dxy+2eyz+2fzx.\]

La forma polar de q es la forma bilineal B tal que para la base canónica e_1,e_2,e_3 de \matbb{R}^3 hace lo siguiente

    \begin{align*}B(e_1,e_1)&=a\\B(e_2,e_2)&=b\\B(e_3,e_3)&=c\\ B(e_1,e_2)&=B(e_2,e_1)=d\\ B(e_2,e_3)&=B(e_3,e_2)=e\\B(e_3,e_1)&=B(e_1,e_3)=f.\end{align*}

\square

Teorema de Gauss de formas cuadráticas (opcional)

Para esta sección, fijemos al espacio vectorial como \mathbb{R}^n. Hay una forma muy natural de construir formas cuadráticas a partir de formas lineales. Tomemos números reales \alpha_1,\ldots, \alpha_r y formas lineales l_1,\ldots,l_r. Consideremos

    \[q(x)=a_1l_1(x)^2+\ldots+\alpha_r l_r(x)^2.\]

Se tiene que q es una forma cuadrática. La demostración de ello es sencillo y se queda como tarea moral.

Lo que descubrió Gauss es que todas las formas cuadráticas se pueden expresar de esta forma, y de hecho, es posible hacerlo usando únicamente formas lineales que sean linealmente independientes y coeficientes 1 y -1.

Teorema (clasificación de Gauss de formas cuadráticas). Sea q una forma cuadrática en \mathbb{R}^n. Entonces, existen enteros no negativos r y s, y formas lineares l_1,\ldots,l_r,m_1,\ldots,m_s en (\mathbb{R}^n)^\ast, todas ellas linealmente independientes, tales que

    \[q=l_1^2+\ldots+l_r^2-m_1^2-\ldots-m_s^2.\]

Hay un pequeño refinamiento de este teorema, demostrado por Sylvester.

Teorema (teorema de la inercia de Sylverster). Los números r y s en el teorema de clasificación de Gauss de formas cuadráticas son únicos.

Ejemplo. Tomemos la forma cuadrática en \mathbb{R}^3 dada por q(x,y,z)=xy+yz+zx. Por el teorema de Gauss, esta forma se debe de poder poner como combinación lineal de cuadrados de formas lineales independientes. En efecto, tenemos que:

    \[xy+yz+zx=\left(\frac{2x+y+z}{2}\right)^2-\left(\frac{y-z}{2}\right)^2-x^2,\]

en donde

    \begin{align*}(x,y,z)&\mapsto \frac{2x+y+z}{2},\\(x,y,z) &\mapsto \frac{y-z}{2}\quad \text{ y }\\(x,y,z)&\mapsto x\end{align*}


son formas lineales linealmente independientes.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Verifica que las formas cuadráticas de los ejemplos del teorema de polarización en efecto son formas cuadráticas.
  • Muestra que q(x,y)=3x^2-y^2+7y no es una forma cuadrática.
  • Muestra que si \alpha_1,\ldots, \alpha_r son reales y tomamos formas lineales l_1,\ldots,l_r en \mathbb{R}^n, entonces

        \[q(x)=a_1l_1(x)^2+\ldots+\alpha_r l_r(x)^2\]

    es una forma cuadrática.
  • ¿Quién es la forma polar de la forma cuadrática Q(f)=\int_{0}^1 f^2(x)\, dx en el espacio vectorial de funciones continuas en el intervalo [0,1]?

Una demostración algorítmica del teorema de Gauss se puede encontrar en la Sección 10.1 del libro de Álgebra Lineal de Titu Andreescu.

Seminario de Resolución de Problemas: El teorema fundamental del cálculo

Introducción

Ya platicamos de continuidad, diferenciabilidad e integrales, así como de otros temas de cálculo. En esta sección reuniremos varias de estas ideas a través de uno de los resultados más importantes: el teorema fundamental del cálculo. Este teorema nos exhibe la relación que hay entre la derivada y la integral, distinguiéndolas como procedimientos inversos el uno del otro.

El teorema nos dice que si tenemos una función F(x) derivable sobre un intervalo [a, b], entonces

    \begin{equation*}\int_{a}^{b} \! F^\prime(t) \, dt = F(b)-F(a).\end{equation*}

Ahora bien, si nuestra función F(t) es derivable en [0,x], tenemos que

    \begin{equation*}\int_{0}^{x} \! F^\prime(t) \, dt = F(x)-F(0),\end{equation*}

a lo que le sigue que

    \begin{equation*}F(x)=\int_{0}^{x} \! F^\prime(t) \, dt + F(0).\end{equation*}

Esto nos recuerda a la constante de integración

    \begin{equation*}F(x)=\int_{0}^{x} \! F^\prime(t) \, dt + C.\end{equation*}

Es decir, tenemos que C=F(0).

Aquí en el blog, en la entrada «Teoremas fundamentales de los cuadraditos» damos la intuición acerca de este teorema, comenzando con el caso discreto. Puedes leerlo antes de continuar.

Usar el teorema fundamental del cálculo para obtener una identidad trigonométrica

Veamos un ejemplo. Tenemos que la derivada de la función F(t)=\sin^2 t es F^\prime (t)=2\cos t\sin t. Por el teorema fundamental del cálculo, la integral de F'(t) en el intervalo [0,x] está dada por

    \begin{equation*}\int_{0}^{x}\! 2 \sin t \cos t \, dt=\sin^2x,\end{equation*}

en donde usamos que F(0)=\sin^2(0)=0.

Por otro lado, resolviendo la integral utilizando el cambio de variable u=\cos t, tenemos que

    \begin{equation*}\int_{0}^{x}\! 2 \sin t \cos t \, dt= \left -\cos^2t \right |_0^x= -\cos^2x+1\end{equation*}

Igualando ambos valores de la integral, tenemos que \sin^2x=-\cos^2 x+1. De aquí obtenemos la identidad trigonométrica pitagórica \sin^2 x+\cos^2x=1 para toda x.

Veamos ahora un problema en el que, mediante el problema fundamental del cálculo,

Problema. Aplicando el teorema fundamental del calculo halla

    \[\int_{a}^{b}\! \sec x\, dx.\]

Sugerencia pre-solución. Formula un problema equivalente multiplicando y dividiendo la expresión por \sec x + \tan x. Intenta identificar la expresión resultante como la derivada de otra función.

Solución. Para resolver este problema tenemos que hallar una función F(x) de tal forma que F^\prime (x)= \sec x.

Para ello, tenemos que notar que

    \begin{align*}\sec x &=\sec x \left(\frac{ \sec x + \tan x}{\sec x+ \tan x}\right)\\ &=\frac{\sec^2x+\sec x \tan x}{\sec x+\tan x}.\end{align*}

Y entonces la derivada de \ln (\sec x + \tan x) es igual a

    \begin{align*}\left(\frac{1}{\sec x + \tan x}\right)&(\sec^2x+\sec x \tan x)\\&=\frac{\sec^2x+\sec x \tan x}{\sec x+\tan x}\\&=\sec x.\end{align*}

Proponemos a la función

    \begin{equation*}F(x)=\ln (\sec x + \tan x)\end{equation*}

dado que

    \begin{equation*}F^\prime (x)=\sec x.\end{equation*}

Ahora, aplicando el teorema fundamental del cálculo tenemos que

    \begin{align*}\int_{a}^{b}\! \sec x\, dx&=F(b)-F(a)\\&=\ln (\sec b + \tan b)-\ln (\sec a + \tan a)\end{align*}

\square

Segundo teorema fundamental del cálculo

Veamos una implicación del teorema fundamental del cálculo, que también se le conoce como el «segundo teorema fundamental del cálculo».

Para una función f: [a,b] \to \mathbb{R} continua en el intervalo [a,b] se tiene que:

    \begin{equation*}\frac{d}{dx}\left(\int_{a}^{x}\! f(t)\, dt\right)=f(x)\end{equation*}

Problema. Determina

    \[\frac{d}{dx}\left(\int_{3x-1}^{0} \! \frac{1}{t+4}\, dt\right).\]

Sugerencia pre-solución. Usa el segundo teorema fundamental del cálculo y la regla de la cadena.

Solución. Como

    \[\int_{3x-1}^{0} \! \frac{1}{t+4}\, dt=-\int_{0}^{3x-1} \! \frac{1}{t+4}\, dt,\]

tenemos entonces que

    \[\frac{d}{dx}\left(\int_{3x-1}^0 \frac{1}{t+4} \, dt\right)= - \frac{d}{dx}\left(\int_{0}^{3x-1} \frac{1}{t+4} \, dt\right).\]

Por otro lado, consideremos las funciones

    \begin{align*}f(x)&=\int_{0}^{x} \! \frac{1}{t+4}\, dt \quad \text{y}\\g(x)&=3x-1.\end{align*}

Aplicando el teorema fundamental del cálculo y derivando tenemos que

    \begin{align*}f^\prime (x)&=\frac{1}{x+4} \quad \text{y}\\g^\prime (x)&=3.\end{align*}

Notemos que

    \begin{align*}(f \circ g)(x)&=f( g(x) )\\&=f(3x-1)\\&=\int_{0}^{3x-1}\! \frac{1}{t+4}\, dt.\end{align*}

Así, aplicando la regla de la cadena, tenemos que

    \begin{align*} -\frac{d}{dx}\left(\int_{0}^{3x-1} \! \frac{1}{t+4}\, dt\right)&=-\frac{d}{dx}(f(g(x))\\&=-f^\prime (g(x)) g^\prime(x)\\&=-\frac{1}{(3x-1)+4}\cdot 3\\&=-\frac{1}{x+1}.\end{align*}

\square

Veamos un último problema en el que se usa la segunda forma del teorema fundamental del cálculo.

Problema: Supongamos que f es una función continua para toda x, la cual satisface la ecuación

(1)   \begin{equation*}\int_{0}^{x} \! f(t)\, dt= \int_{x}^{1} \! t^2f(t) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C,\end{equation*}

donde C es una constante. Encuentra la forma explícita de la función f(x) y determina el valor de la constante C.

Sugerencia pre-solución.

Solución. De la ecuación, tenemos lo siguiente

    \begin{equation*}\frac{d}{dx}\left(\int_{0}^{x} \! f(t)\, dt\right)= \frac{d}{dx}\left(\int_{x}^{1} \! t^2f(t) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C \right)\end{equation*}

Como f es continua para toda x, por el teorema fundamental del cálculo en su segunda forma tenemos que

    \begin{equation*}\frac{d}{dx} \left( \int_{0}^{x} \! f(t)\, dt \right)= f(x)\end{equation*}

y

    \begin{align*}\frac{d}{dx} \left( \int_{x}^{1} \! t^2f(t)\, dt \right)&= - \frac{d}{dx} \left( \int_{1}^{x} \! t^2f(t)\, dt \right)\\&= -x^2f(x).\end{align*}

Entonces, derivando ambos lados de la expresión original nos resulta la ecuación

    \begin{equation*}f(x)=-x^2f(x)+2x^{15}+2x^{17},\end{equation*}

de la cual se obtiene

    \begin{align*}f(x) (x^2+1)&=2x^{15}+2x^{17}\\&=2x^{15}(x^2+1)\end{align*}

Así, tenemos que

    \begin{equation*}f(x)=2x^{15}.\end{equation*}

Sustituyendo f(t)=2t^{15} en la ecuación (1), tenemos que

    \begin{equation*}\int_{0}^{x} \! 2t^{15}\, dt= \int_{x}^{1} \! t^2(2t^{15}) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C\end{equation*}

Así,

    \begin{equation*}\begin{align*}\int_{0}^{x} \! 2t^{15}\, dt= \int_{x}^{1} \! t^2(2t^{15}) \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C\\\int_{0}^{x} \! 2t^{15}\, dt= -\int_{1}^{x} \! 2t^{17} \, dt +\frac{x^{16}}{8}+\frac{x^{18}}{9}+C\\\left \frac{2t^{16}}{16} \right|_{0}^{x}= - \left \left(\frac{2t^{18}}{18} \right) \right|_{1}^{x}+\frac{x^{16}}{8}+\frac{x^{18}}{9}+C\\\frac{x^{16}}{8}= - \left( \frac{x^{18}}{9}-\frac{1}{9}\right)+\frac{x^{16}}{8}+\frac{x^{18}}{19}+C\\\end{align*}\end{equation*}

Con ello, tenemos que

    \begin{equation*}C+\frac{1}{9}=0\end{equation*}

Por lo tanto la función que satisface la ecuación es f(x)=2x^{15} y el valor de la constante es C= - \frac{1}{9}.

\square

Más problemas

Hay más ejemplos de problemas relacionados con la aplicación del teorema fundamental del cálculo en la Sección 6.9 del libro Problem Solving through Problems de Loren Larson.

Trabajar hacia atrás

HeuristicasHay algunos laberintos en los cuales es más fácil empezar por la salida que por la entrada. Como que empezar al final nos da más información. De modo similar, hay algunos problemas que nos dan más información si empezamos por las conclusiones que por las hipótesis.

Así mismo, en algunos problemas se tiene que seguir un cierto proceso y la pregunta es acerca de algunos estados alcanzables. En vez de empezar con un estado y ver a dónde llega, es mejor preguntarse cómo pudimos llegar al estado buscado.

Estas ideas también sirven para saber «en donde estás» mientras resuelves un problema: ¿Qué es lo que quieres y qué es lo que sabes?

Ir a los videos…

Elegir notación efectiva

HeuristicasPara que las matemáticas realmente simplifiquen las cosas y no las compliquen más, una de las cosas que se necesita es tener una notación adecuada.

En esta serie de videos veremos algunos ejemplos en los cuales elegir variables adecuadas o una representación adecuada del problema puede ayudar en la solución del problema o bien simplifica algunas cuentas.

Ir a los videos…