Archivo de la etiqueta: ortocentro

Geometría Moderna I: Cuadrángulo ortocéntrico

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada veremos que los cuatro triángulos que se forman con los vértices de un cuadrángulo ortocéntrico, tienen la misma circunferencia de los nueve puntos y derivaremos algunas otras propiedades.

Cuadrángulo ortocéntrico

Definición. Un cuadrángulo ortocéntrico es el conjunto de puntos formado por los vértices de un triángulo y su ortocentro.

Nos referiremos a los cuatro triángulos que se pueden formar con los cuatro puntos de un cuadrángulo ortocéntrico como grupo ortocéntrico de triángulos.

Teorema 1. Cualquier punto de un cuadrángulo ortocéntrico es el ortocentro del triángulo formado por los otros tres puntos y los triángulos de este grupo ortocéntrico tienen el mismo triangulo órtico.

Demostración. Sea $\triangle ABC$ y $H$ su ortocentro.

Figura 1

Notemos que el ortocentro de $\triangle BHC$ es $A$ pues $AB \perp HC$, $AH \perp BC$ y $AC \perp HB$.

De manera análoga podemos ver que $B$ es el ortocentro de $\triangle AHC$ y $C$ es el ortocentro de $\triangle AHB$.

Por otro lado, los pares de rectas perpendiculares $AH$, $BC$; $BH$, $AC$ y $CH$, $AB$, se intersecan en $D$, $E$ y $F$, respectivamente.

Por lo tanto, estos tres puntos son fijos, así el triángulo órtico es el mismo para los cuatro triángulos $\triangle ABC$, $\triangle HAB$, $\triangle HAC$ y $\triangle HBC$.

$\blacksquare$

Corolario 1. Las circunferencias de los nueve puntos de un grupo ortocéntrico de triángulos coinciden y sus circunradios son iguales.

Demostración. Como el circuncírculo del triángulo órtico de un triángulo dado es la circunferencia de los nueve puntos, por el teorema 1, los triángulos de un grupo ortocéntrico tienen la misma circunferencia de los nueve puntos.

En la entrada anterior vimos que el radio de la circunferencia de los nueve puntos es igual a la mitad del circunradio de su triángulo de referencia.

Por lo tanto, $\triangle ABC$, $\triangle HAB$, $\triangle HAC$ y $\triangle HBC$ tienen el mismo circunradio (figura 1).

$\blacksquare$

Circuncentros

Teorema 2. Los circuncentros de un grupo ortocéntrico de triángulos forman un cuadrángulo ortocéntrico.

Demostración. Por el teorema 2 de la entrada anterior, sabemos que el circuncentro de un triángulo es la reflexión de su ortocentro respecto de $N$, el centro de los nueve puntos.

Como los triángulos de un grupo ortocéntrico tienen el mismo centro de los nueve puntos, los circuncentros $O_a$, $O_b$, $O_c$ y $O$ de $\triangle HBC$, $\triangle HAC$, $\triangle HAB$ y $\triangle ABC$ son las reflexiones de $A$, $B$, $C$ y $H$ respectivamente respecto a $N$.

Figura 2

Dado que una reflexión es una homotecia de razón $-1$ entonces las figuras $ABCH$ y $O_aO_bO_cO$ son congruentes y por lo tanto $O_aO_bO_cO$ es un cuadrángulo ortocéntrico.

$\blacksquare$

Corolario 2. Un grupo ortocéntrico de triángulos y el grupo ortocéntrico de triángulos formado por sus circuncentros tienen la misma circunferencia de los nueve puntos.

Demostración. Como las figuras $ABCH$ y $O_aO_bO_cO$ son simétricas respecto a $N$ entonces también sus circunferencias de los nueve puntos son simétricas respecto a $N$.

Como $N$ es el centro de una de estas circunferencias, entonces coinciden.

Observación. Notemos que como $O_aO_bO_cO$ es un grupo ortocéntrico de triángulos, entonces la reflexión de sus ortocentros respecto al centro de los nueve puntos $N$ será el conjunto de sus circuncentros.

Entonces $A$, $B$, $C$ y $H$ son los circuncentros de $\triangle O_bO_cO$, $\triangle O_aO_cO$, $\triangle O_aO_bO$ y $\triangle O_aO_bO_c$ respectivamente.

$\blacksquare$

Problema. Construye un triángulo $\triangle ABC$ dados el centro de los nueve puntos $N$ y los circuncentros $O_b$ y $O_c$ de los triángulos $\triangle CAH$ y $\triangle ABH$ respectivamente donde $H$ es el ortocentro de $\triangle ABC$.

Solución. $O_b$ y $O_c$ son los ortocentros de $\triangle O_aO_cO$ y $\triangle O_aO_bO$ respectivamente y si los reflejamos respecto a $N$ obtendremos a los circuncentros de sus respectivos triángulos, estos son los vértices $B$ y $C$ del triángulo requerido.

Ahora tenemos dos vértices y el centro de los nueve puntos, este problema lo resolvimos en la entrada anterior.

$\blacksquare$

Centroices

Teorema 3. Los cuatro centroides de un grupo ortocéntrico de triángulos forman un cuadrángulo ortocéntrico.

Demostración. Sea $\triangle ABC$ y $H$ su ortocentro.

Sabemos que el centro de los nueve puntos $N$ de $\triangle ABC$ divide internamente al segmento $HG$ en razón $3:1$, donde $G$ es el centroide de $\triangle ABC$.

Figura 3

Como el grupo ortocéntrico de triángulos $\triangle ABC$, $\triangle HBC$, $\triangle HAC$, $\triangle HAB$ tienen el mismo centro de los nueve puntos $N$, entonces sus respectivos centroides $G$, $G_a$, $G_b$, $G_c$ están en homotecia con $H$, $A$, $B$, $C$ respectivamente desde $N$ y la razón de homotecia es $-3$.

Como dos figuras homotéticas son semejantes, entonces $GG_aG_bG_c$ es un cuadrángulo ortocéntrico.

$\blacksquare$

Corolario 3. La circunferencia de los nueve puntos de un grupo ortocéntrico de triángulos y la circunferencia de los nueve puntos del grupo ortocéntrico formado por sus centroides son concéntricas.

Demostración. Como las figuras $HABC$ y $GG_aG_bG_c$ están en homotecia desde el centro de los nueve puntos $N$ de $\triangle ABC$ entonces sus respetivas circunferencias de los nueve puntos también están en homotecia desde $N$.

Como $N$ es el centro de una de ellas, entonces son concéntricas.

$\blacksquare$

Corolario 4. Dado un cuadrángulo ortocéntrico, el cuadrángulo ortocéntrico formado por sus circuncentros y el cuadrángulo ortocéntrico formado por sus centroides tienen el mismo centro de los nueve puntos y además existe una homotecia entre ellos con centro en este punto.

Demostración. Por los corolarios 2 y 3, $OO_aO_bO_c$ y $GG_aG_bG_c$ tienen el mismo centro de los nueve puntos que $HABC$ y son homotéticos con este último precisamente desde $N$ en razón $-1$ y $-3$ respectivamente.

Figura 4

Por lo tanto, existe una homotecia con centro en $N$ y razón $3$ que lleva a $GG_aG_bG_c$ en $OO_aO_bO_c$.

$\blacksquare$

Incentro y excentros

Teorema 4. El incentro y los excentros de un triángulo dado forman un cuadrángulo ortocéntrico y el circuncírculo del triángulo dado es la circunferencia de los nueve puntos de este grupo ortocéntrico de triángulos.

Demostración. Como las bisectrices interna y externa de los ángulos de un triángulo $\triangle ABC$ son perpendiculares entre si entonces el incentro $I$ es el ortocentro del triángulo formado por los excentros $\triangle I_aI_bI_c$ y el triángulo $\triangle ABC$ es el triángulo órtico de $\triangle I_aI_bI_c$.

Figura 5

Entonces, por el teorema 1 y corolario 1, $I_aI_bI_cI$ es un grupo ortocéntrico de puntos y su circunferencia de los nueve puntos es el circuncírculo de $\triangle ABC$.

$\blacksquare$

Proposición. El segmento que une el ortocentro de un triángulo dado con el circuncentro del triángulo formado por los excentros del triángulo dado es bisecado por el incentro del triángulo medial del triángulo dado.

Demostración. Sea $\triangle ABC$ un triángulo, $I$, $I_a$, $I_b$, $I_c$, el incentro y sus respectivos excentros, $O$ y $O_e$ los circuncentros de $\triangle ABC$ y $\triangle I_aI_bI_c$ respectivamente.

Figura 6

Por el teorema anterior, $I$ y $O$ son el ortocentro y el centro de los nueve puntos respectivamente de $\triangle I_aI_bI_c$, por lo tanto, $O$ es el punto medio de $IO_e$.

Sean $H$ y $G$ el ortocentro y el centroide respectivamente de $\triangle ABC$, como $H$, $G$ y $O$ son colineales y $G$ triseca el segmento $OH$, entonces, $G$ es el centroide de $\triangle IO_eH$.

Por lo tanto, $IG$ biseca a $O_eH$ en $I’$ y $\dfrac{IG}{2} = GI’$.

Por otro lado, sabemos que existe una homotecia con centro en $G$ y razón $\dfrac{-1}{2}$, que lleva a $\triangle ABC$, a su triangulo medial $\triangle A’B’C’$, por lo que sus respectivos incentros $I$ y $I_m$ son puntos homólogos de esta homotecia, es decir $I$, $G$ y $I_m$ son colineales y $G$ triseca al segmento $II_m$.

Como $I’$ cumple con estas características entonces $I’ = I_m$.

$\blacksquare$

Más adelante…

En la próxima entrada estudiaremos otra recta notable del triángulo, la recta de Simson, veremos que la intersección de dos rectas de Simson se intersecan en la circunferencia de los nueve puntos y que cierto conjunto de rectas de Simson forman un cuadrángulo ortocéntrico.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que las rectas de Euler de los cuatro triángulos de un grupo ortocéntrico son concurrentes.
  2. Demuestra que el simétrico del circuncentro de un triángulo con respecto a uno de los lados del triángulo coincide con el simétrico del vértice opuesto al lado considerado respecto al centro de los nueve puntos del triángulo.
  3. Muestra que los vértices de un grupo ortocéntrico de triángulos pueden ser considerados como los centroides de otro grupo ortocéntrico de triángulos.
  4. Sea $\triangle ABC$ un triángulo rectángulo con $\angle A = \dfrac{\pi}{2}$, $D$ el pie de la altura por $A$, las bisectrices de $\angle BAD$ y $\angle DAC$ intersecan a $BC$ en $P$ y $P’$ respectivamente. Las bisectrices de $\angle DBA$ y $\angle ACD$ intersecan a $AD$ en $Q$ y $Q’$ respectivamente.
    $i)$ Muestra que $PP’QQ’$ es un cuadrángulo ortocéntrico,
    $ii)$ si $I$, $J$ y $K$ son los incentros de $\triangle ABC$, $\triangle ABD$ y $\triangle ADC$, muestra que $AIJK$ es un cuadrángulo ortocéntrico.
  5. Prueba que la suma de los cuadrados de dos segmentos no adyacentes que unen vértices de un cuadrángulo ortocéntrico es igual al cuadrado del circundiámetro de los triángulos de este grupo ortocéntrico.
  6.  Construye un triángulo $\triangle ABC$ dados su circuncentro $O$, y los circuncentros de los triángulos $\triangle II_bI_c$ y $\triangle II_aI_c$, donde $I$, $I_a$, $I_b$ y $I_c$ es el incentro y los excentros de $\triangle ABC$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 109-115.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 165-167.
  • Shively, L., Introducción a la Geómetra Moderna. México: Ed. Continental, 1961, pp 58.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Triángulo órtico

Por Rubén Alexander Ocampo Arellano

Introducción

Continuando con el estudio de triángulos asociados a un triangulo dado, en esta entrada veremos algunas propiedades del triángulo órtico de un triangulo dado.

Mostraremos solo las proposiciones referentes a triángulos acutángulos, por ser muy parecidas las correspondientes versiones para triángulos obtusángulos, quedaran como ejercicio.

Preliminares

Proposición 1. El vértice de un triángulo es el punto medio del arco formado por las intersecciones de su circuncírculo con las alturas del triángulo que no pasan por el vértice considerado.

Demostración. Sean $\triangle ABC$ y $D$, $E$, $F$ los pies de las alturas por $A$, $B$, $C$, respectivamente (figura 1).

Los triángulos rectángulos $\triangle BEA$ y $\triangle CFA$ son semejantes pues $\angle A$ es un ángulo en común, por lo tanto, $\angle EBA = \angle ACF$.

Por otro lado, consideremos $D’ = AD \cap (O, R)$, $E’ = BE \cap (O, R)$ y $F’ = CF \cap (O, R)$, las intersecciones de las alturas con el circuncírculo de $\triangle ABC$, entonces $\angle E’BA = \angle EBA = \angle ACF = \angle ACF’$.

Esto implica que los respectivos ángulos centrales son iguales $\angle E’OA = \angle AOF’$, por lo tanto, la longitud de arco es la misma $\overset{\LARGE{\frown}}{E’A} = \overset{\LARGE{\frown}}{AF’}$ y así $A$ es el punto medio de $\overset{\LARGE{\frown}}{E’F’}$.

Figura 1

De manera análoga vemos que $B$ y $C$ bisecan a los arcos $\overset{\LARGE{\frown}}{F’D’}$, $\overset{\LARGE{\frown}}{D’E’}$ respectivamente.

$\blacksquare$

Proposición 2. El pie de la altura de un triángulo acutángulo es el punto medio del segmento que une el ortocentro y la intersección de la altura considerada con el circuncentro.

Demostración. Por la proposición 1, $B$ es el punto medio del arco $\overset{\LARGE{\frown}}{F’D’}$, por lo tanto $\angle F’OB = \angle BOD’$ y así $\angle F’CB = \angle BCD’$.

De esto se sigue que los triángulos rectángulos $\triangle HCD$, $\triangle D’CD$ son congruentes por criterio ALA, por lo tanto, $HD = DD’$.

Por lo tanto, $D$ es el punto medio de $HD’$, de manera análoga podemos ver que $E$ y $F$ son los puntos medio de $HE’$ y $HF’$ respetivamente.

$\blacksquare$

Triángulo órtico

Definición 1. Al triángulo cuyos vértices son los pies de las alturas de un triángulo dado se le conoce como triangulo órtico del triángulo dado.

Proposición 3. El triángulo órtico de un triángulo y el triángulo cuyos vértices son las intersecciones de su circuncírculo con las alturas del triángulo son homotéticos.

Demostración. Por la proposición 2, $E$ y $F$ son puntos media de $HE’$ y $HF’$ respectivamente (figura 1), por tanto, $EF$ es un segmento medio del triángulo $\triangle HE’F’$, entonces $EF \parallel E’F’$ y $2EF = E’F’$.

De manera análoga podemos ver que $FD \parallel F’D’$, $2FD = F’D’$ y $DE \parallel D’E’$, $2DE = D’E’$.

De lo anterior concluimos que $\triangle DEF$ está en homotecia con $\triangle D’E’F’$ con centro en $H$ y razón $\dfrac{1}{2}$.

$\blacksquare$

Teorema 1. El ortocentro y los vértices de un triángulo acutángulo son en incentro y los excentros respectivamente de su triangulo órtico.

Demostración. Por la proposición 1, $A$ es el punto medio del arco $\overset{\LARGE{\frown}}{E’F’}$ (figura 1), por lo tanto, $\angle E’D’A = \angle AD’F’$.

Por la proposición 3, los lados de $\triangle DEF$ son paralelos a los lados de $\triangle D’E’F’$, por lo tanto $\angle EDA = \angle E’D’A = \angle AD’F’ = \angle ADF$.

Entonces $AD$ es bisectriz de $\angle EDF$, así podemos ver que las otras alturas de $\triangle ABC$ son las bisectrices de su triangulo órtico, con lo que $H$ es el incentro de $\triangle DEF$.

Como los lados del triángulo son perpendiculares a las alturas entonces son las respectivas bisectrices exteriores de su triangulo órtico, de esto se sigue el resultado.

$\blacksquare$

Triángulo tangencial

Definición 2. Al triangulo cuyos lados son las rectas tangentes al circuncírculo de un triángulo dado a través de sus vértices, se le conoce como triángulo tangencial del triángulo dado.

Proposición 4. Los radios del circuncírculo de un triángulo que pasan por los vértices del triángulo son perpendiculares a los respetivos lados de su triangulo órtico.

Demostración. $\triangle E’OF’$ es isósceles (figura 2), pues $OE’$ y $OF’$ son radios del circuncírculo de $\triangle ABC$.

Por la proposición 1, $A$ es el punto medio del arco $\overset{\LARGE{\frown}}{E’F’}$, por lo que $OA$ es bisectriz de $\angle E’OF’$, por lo tanto, $OA$ es mediatriz de $E’F’$.

Por la proposición 3, $E’F’ \parallel EF$ $\Rightarrow OA \perp EF$.

Figura 2

De manera análoga se ve que $OB \perp FD$ y $OC \perp DE$.

$\blacksquare$

Teorema 2. El triángulo órtico y el triángulo tangencial de un triángulo dado son homotéticos y el centro de homotecia se encuentra en la recta de Euler del triángulo dado.

Demostración.  Sean $\triangle DEF$ y $\triangle D’’E’’F’’$ el triángulo órtico y tangencial respectivamente de $\triangle ABC$ (figura 2).

Como los lados del triángulo tangencial son perpendiculares a los radios que pasan por los vértices del triángulo dado, por la proposición 4, los lados del triángulo órtico son paralelos a los lados del triángulo tangencial y esto implica que los triángulos son homotéticos.

Como $\triangle DEF$ y $\triangle D’’E’’F’’$ son homotéticos entonces sus respectivos incentros son puntos homólogos.

Por el teorema 1, el incentro de $\triangle DEF$ es el ortocentro de $\triangle ABC$ y por construcción el incentro de $\triangle D’’E’’F’’$ es el circuncentro de $\triangle ABC$.

Como el centro de homotecia se encuentra en la recta que pasa por cualquier par de puntos homólogos, entonces el centro de homotecia de $\triangle DEF$ y $\triangle D’’E’’F’’$ se encuentra en la recta determinada por $H$ y $O$, es decir, la recta de Euler de $\triangle ABC$.

$\blacksquare$

Perímetro del triángulo órtico

Proposición 5. Los lados del triángulo órtico de un triángulo acutángulo dividen al triángulo acutángulo en tres triángulos semejantes al triángulo dado.

Demostración. Sean $D$, $E$ y $F$ los pies de las alturas de un triangulo $\triangle ABC$ y $H$ su ortocentro, (figura 3).

Como la suma de los ángulos internos de todo cuadrilátero convexo es $2\pi$, en $\square HDCE$ tenemos $\angle D + \angle E = \pi$
$\Rightarrow \angle C + \angle H = \pi$
$\Rightarrow \angle DHE = \angle A + \angle B$

Como $\angle BHD + \angle DHE = \angle BHE = \pi$
$\Rightarrow \angle BHD = \angle C$.

Por otro lado, $\triangle FBH$ y $\triangle DBH$ son triángulos rectángulos que tienen la misma hipotenusa, por lo tanto $\square FBDH$ es cíclico.

Entonces $\angle BHD = \angle BFD$, pues abarcan el mismo arco
$\Rightarrow \angle BFD = \angle C$.

Por criterio de semejanza AA, $\triangle DBF \sim \triangle ABC$.

Figura 3

Podemos hacer un procedimiento similar para los demás triángulos.

Por lo tanto, $\triangle ABC \sim \triangle DBF \sim \triangle DEC \sim \triangle AEF$.

$\blacksquare$

Proposición 6. En un triángulo la distancia de uno de sus lados al circuncentro es igual a la mitad de la distancia del vértice opuesto al ortocentro del triángulo.

Demostración. Sea $(O, R)$ el circuncírculo de $\triangle ABC$, consideremos $C’$ el punto diametralmente opuesto a $C$ y $M$ el pie de la perpendicular a $AC$ desde $O$, (figura 3).

Notemos que $M$ es el punto medio de $AC$ pues $O$ está en la mediatriz de $AC$.

Como $O$ es el punto medio de $CC’$ entonces $OM$ es un segmento medio de $\triangle CAC’$, así $2OM = C’A$.

$\angle C’AC = \angle CBC’ = \dfrac{\pi}{2}$, pues $CC’$ es diámetro

Por lo tanto, $AH$ y $C’B$ son perpendiculares a $BC$
$\Rightarrow AH \parallel C’B$.

Y $C’A$ y $BH$ son perpendiculares a $AC$,
$\Rightarrow C’A \parallel BH$.

Entonces $\square AC’BH$ es un paralelogramo, por lo tanto, $BH = C’A = 2OM$.

$\blacksquare$

Proposición 7. La razón entre un lado de un triángulo acutángulo y el lado correspondiente a su triangulo órtico es igual a la razón entre el circunradio y la distancia del lado considerado al circuncentro.

Demostración. En la proposición 5 vimos que $\triangle ABC \sim \triangle DBF$ y que $A$, $F$, $H$ y $E$ están inscritos en una misma circunferencia cuyo diámetro es $BH$, (figura 3).

Por lo tanto, la razón entre sus circundiametros guarda la razón de semejanza, es decir,
$\dfrac{AC}{DF} = \dfrac{2R}{BH} = \dfrac{2R}{2OM} = \dfrac{R}{OM}$.

Donde $R$ es el circunradio y la segunda igualdad se debe a la proposición 6.

$\blacksquare$

 Teorema 3. El perímetro del triángulo órtico de un triángulo acutángulo es igual a dos veces el área del triángulo acutángulo dividido por el circunradio (figura 3).

Demostración. Consideremos $N$, $M$ y $L$ los pies de las perpendiculares a $BC$, $AC$ y $AB$ desde $O$ respectivamente.

Por la proposición 7 tenemos que
$DE + EF + FD = \dfrac{OL \times AB + ON \times BC + OM \times AC}{R}$.

Y notemos que
$(\triangle ABC) = (\triangle BOC) + (\triangle COA) + (\triangle AOB)$
$= \dfrac{ON \times BC + OM \times AC + OL \times AB}{2}$.

Por lo tanto, $DE + EF + FD = \dfrac{2(\triangle ABC)}{R}$.

$\blacksquare$

Problema de Fagnano

Teorema 4. De entre todos los triángulos inscritos en un triángulo acutángulo, su triángulo órtico es el de menor perímetro.

Demostración. Sean $\triangle ABC$ un triángulo acutángulo, $\triangle DEF$ su triangulo órtico y $\triangle GHI$ cualquier otro triangulo inscrito en $\triangle ABC$.

Hacemos una sucesión de reflexiones del triángulo $\triangle ABC$ a través de uno de sus lados, empezando por $AC$, luego $B_1C$, $B_1A_1$, $A_1C_1$ y finalmente $B_2C_1$ (figura 4).

El camino que sigue el segmento $AB$ es el siguiente, primerio una rotación $2\angle A$ alrededor de $A$ en sentido antihorario, después una rotación $2\angle B$ alrededor de $B_1$ en sentido antihorario, a continuación, una rotación $2\angle A$ alrededor de $A_1$ en sentido horario y finalmente una rotación $2\angle B$ alrededor de $B_2$ en sentido horario.

Figura 4

Por lo tanto, $AB$ y $A_2B_2$ son paralelas, se sigue que $F$, $G \in AB$ y sus respectivas imágenes $F_4$, $G_4 \in A_2B_2$ forman un paralelogramo por lo que $FF_4 = GG_4$.

Por otro lado, la simetría de $D$ y $D_1$ nos garantiza que $\angle DEC = \angle CED_1$, además, por el teorema 1, $BE$ es bisectriz de $\angle FED$, por lo tanto, $\angle AEF = \angle DEC$.

Entonces, $\angle FED_1 = \angle FED + \angle DEC + \angle CED_1 = \angle FED + \angle 2DEC = \pi$, por lo tanto, $F$, $E$ y $D_1$ son colineales.

Por lo anterior podemos afirmar que $FED_1F_2E_2D_3F_4$ es una recta, coincide con $FF_4$ y es igual a dos veces el perímetro del triángulo órtico.

Como no podemos hacer las mismas afirmaciones para $\triangle GHI$, tenemos que el camino $GHI_1G_2H_2I_3G_4$ es igual a dos veces el perímetro de $\triangle GHI$ y es claramente mayor o igual que el segmento $GG_4$ que equivale a dos veces el perímetro de $\triangle DEF$.

$\blacksquare$

Más adelante…

En la siguiente entrada veremos como los circuncírculos del triángulo medial y del triángulo órtico, coinciden para cualquier triangulo dado.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que las proposiciones $1$, $2$, $3$, $4$, y los teoremas $1$ y $2$ se cumplen también para triángulos con un ángulo obtuso.
  2. Construye un triángulo dados los puntos de intersección de las alturas con el circuncírculo del triángulo.
  3. Si $P$ y $Q$ son los pies de las perpendiculares desde los vértices $B$ y $C$ de un triangulo $\triangle ABC$, a los lados $DF$ y $DE$ respectivamente de su triangulo órtico, muestra que $EQ = FP$.
Figura 5
  1. Muestra que los pies de las perpendiculares trazadas desde el pie de una altura en un lado de un triángulo a los otros lados y las otras alturas del triángulo son colineales.
Figura 6
  1. Demuestra que el perímetro del triángulo órtico de un triángulo acutángulo es menor o igual que dos veces cualquiera de las alturas del triángulo acutángulo.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 97-102.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 16-18, 88-89.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 84-85.
  • Johnson, R., Advanced Euclidean Geometry. New York: Dover, 2007, pp 168-169.
  • Honsberger, R., Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington: The Mathematical Association of America, 1995, pp 17-26.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Triángulo medial y recta de Euler

Por Rubén Alexander Ocampo Arellano

Introducción

Continuando con el estudio de las propiedades del centroide, en esta entrada veremos que es colineal con el ortocentro y el circuncentro, y que además triseca al segmento que une dichos puntos. Para establecer estos resultados, veremos primero algunos resultados del triángulo medial de un triángulo dado.

Triángulo medial

Definición 1. Al triángulo que tiene como vértices los puntos medios de un triángulo dado se le conoce como triángulo medial o triángulo complementario del triángulo dado.

Teorema 1. Un triángulo y su triángulo medial son homotéticos además comparten el mismo centroide.

Demostración. Sean $\triangle ABC$, $A’$, $B’$ y $C’$ los puntos medios de $BC$, $AC$ y $AB$ respectivamente.

Por el teorema del segmento medio, los lados del triángulo medial $\triangle A’B’C’$ son paralelos a los lados de $\triangle ABC$ y por lo tanto son homotéticos.

Ya que las rectas determinadas por dos puntos homólogos, $AA’$, $BB’$ y $CC’$ son las medianas de $\triangle ABC$, entonces el centroide $G$ es el centro de homotecia y sabemos que $2AG = GA’$, por lo que la razón de homotecia es $\dfrac{-1}{2}$, donde el signo menos indica que dos puntos homólogos de esta homotecia se encuentran en lados opuestos respecto del centro de homotecia.

Figura 1

Como $BC$ y $B’C’$ son rectas homotéticas, entonces el punto homólogo de $A’ \in BC$ es $E = A’G \cap B’C’$, y como $A’$ es el punto medio de $BC$ entonces $E$ es el punto medio de $B’C’$, pues la homotecia preserva las proporciones.

Por lo tanto, $A’G$ es mediana de $\triangle A’B’C’$, de manera similar podemos ver que $B’G$ y $C’G$ son medianas de $\triangle A’B’C’$, por lo tanto, $G$ es el centroide de $\triangle A’B’C’$.

$\blacksquare$

Proposición 1. El circuncentro de un triángulo es el ortocentro de su triángulo medial.

Demostración. Se sigue del hecho de que las mediatrices de un triángulo son las alturas de su triángulo medial, esto es así porque los vértices del triángulo medial son, por definición, los puntos medios de un triángulo dado y los lados del triángulo medial son paralelos a los lados del triángulo dado.

$\blacksquare$

Figura 2

Triángulo anticomplementario

Definición 2. Dado un triángulo, al triángulo formado por las rectas paralelas a los lados del triángulo dado a través de los respectivos vértices opuestos, se le conoce como triángulo anticomplementario del triángulo dado.

Proposición 2. Un triángulo y su triángulo anticomplementario son homotéticos y tienen el mismo centroide.

Demostración. Consideremos $\triangle ABC$ y $\triangle A’’B’’C’’$ su triángulo anticomplementario.

Figura 3

Como $\square C’’BCA$ y $\square ABCB’’$ son paralelogramos entonces $C’’A = BC = AB’’$, por lo tanto, $A$ es el punto medio de $B’’C’’$. De manera análoga vemos que $B$ y $C$ son puntos medio de $A’’C’’$ y $A’’B’’$ respectivamente,

Por lo tanto, $\triangle ABC$ es el triángulo medial de $\triangle A’’B’’C’’$ y por el teorema 1 se tiene el resultado.

$\blacksquare$

Circunferencia de Droz Farny

Proposición 3. El producto de los segmentos en que el ortocentro divide a la altura de un triángulo es igual para las tres alturas del triángulo.

Demostración. Sean $\triangle ABC$ y $D$, $E$ y $F$ los pies de las alturas por $A$, $B$ y $C$ respectivamente y $H$ el ortocentro.

Figura 4

Notemos que $\triangle AFH \sim \triangle CDH$ y $\triangle AEH \sim \triangle BDH$ (son semejantes) pues son triángulos rectángulos y comparten un ángulo opuesto por el vértice, por lo tanto
$\dfrac{AH}{CH} = \dfrac{FH}{DH}$ $\Rightarrow AH \times DH = CH \times HF$,
$\dfrac{AH}{BH} = \dfrac{EH}{DH}$ $\Rightarrow AH \times DH = BH \times HE$.

De esto se sigue que
$CH \times HF = AH \times DH = BH \times HE$.

$\blacksquare$

Teorema 2. Si tomamos los vértices de un triángulo como centros de circunferencias del mismo radio, estas cortaran a los respectivos lados de su triángulo medial en tres pares de puntos que son equidistantes del ortocentro del triángulo.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ su triángulo medial, tracemos tres circunferencias del mismo radio $(A, r)$, $(B, r)$ y $(C, r)$ las cuales intersecan a $B’C’$, $A’C’$ y $A’B’$ en $P$, $P’$; $Q$, $Q’$ y $R$, $R’$, respectivamente.

Sean $D \in BC$ el pie de la altura por $A$, y $M = AD \cap B’C’$, por el teorema de Pitágoras en $\triangle AMP$ y $\triangle HMP$ tenemos
$AP^2 – AM^2 = MP^2 = HP^2 – HM^2$
$\Rightarrow AP^2 – HP^2 = AM^2 – HM^2 = (AM + HM)(AM – HM)$.

Figura 5

Como $\triangle AC’B’ \cong \triangle C’BA’$ son congruentes por criterio LLL entonces sus alturas desde $A$ y $C’$, respectivamente, son iguales , por lo tanto $AM = MD$,
$\Rightarrow AP^2 – HP^2 = (MD + HM)AH = HD \times AH$.

Por otra parte, $\triangle PAP’$ es isósceles y como $AM$ es altura entonces $AM$ es mediatriz de $PP’$, por lo tanto $HP = HP’$$\Rightarrow$
$\begin{equation} HP’^2 = HP^2 = AP^2 – AH \times HD. \end{equation}$.

Si consideramos $E$ y $F$ los pies de las alturas por $B$ y $C$ respectivamente podemos encontrar fórmulas análogas
$\begin{equation} HQ’^2 = HQ^2 = BQ^2 – BH \times HE, \end{equation} $
$\begin{equation} HR’^2 = HR^2 = CR^2 – CH \times HF. \end{equation} $.

Como $(A, r)$, $(B, r)$ y $(C, r)$ tienen el mismo radio, entonces $AP = BQ = CR$ y por la proposición 3, $AH \times DH = BH \times HE = CH \times HF$.

Tomando lo anterior en cuenta y a las ecuaciones $(1)$, $(2)$ y $(3)$ se sigue que
$HP = HP’ = HQ = HQ’ = HR = HR’$.

$\blacksquare$

Recta de Euler

Teorema 3. El circuncentro, el centroide y el ortocentro de todo triangulo son colineales, con el centroide siempre en medio, a la recta determinada por estos tres puntos se le conoce como recta de Euler del triángulo, además $HG = 2GO$.

Demostración. Sean $\triangle ABC$ y $\triangle A’B’C’$ su triángulo medial, por el teorema 1, $\triangle ABC$ y $\triangle A’B’C’$ están en homotecia desde $G$, el centroide, que es el mismo para ambos triángulos, y la razón de homotecia es $\dfrac{-1}{2}$.

Consideremos la altura $AD$ de $\triangle ABC$, la homotecia de $AD$ es una recta paralela a ella y que pasa por el punto homólogo de $A$, $A’$, es decir la homotecia de una altura de $\triangle ABC$ es una altura de $\triangle A’B’C’$.

Figura 6

Como el ortocentro $H$ de $\triangle ABC$ es la intersección de sus alturas, entonces su punto homologo bajo la homotecia estará en la intersección de las alturas de $\triangle A’B’C’$, esto es, el ortocentro de $\triangle A’B’C’$, $H’$.

Con esto tenemos que el ortocentro de $\triangle A’B’C’$ es colineal con $G$ el centroide y el ortocentro de $\triangle ABC$ respectivamente, además, debido a la razón de homotecia, $HG = 2GH’$.

Por la proposición 1, el ortocentro del triángulo medial $\triangle A’B’C’$ es el circuncentro $O$ de $\triangle ABC$.

Así, $O$, $G$ y $H$ son colineales y $HG = 2GO$.

$\blacksquare$

Observación. Notemos que si el triángulo es equilátero el ortocentro, el centroide y el circuncentro son el mismo punto y por lo tanto la recta de Euler degenera en un punto.

Problema. Construye un triángulo $\triangle ABC$ dados el vértice $A$, el circuncentro $O$ y las distancias de $A$ al ortocentro $AH$, y al centroide $AG$.

Solución. El centroide $G$ se encuentra en la circunferencia con centro en $A$ y radio $AG$, $(A, AG)$, el ortocentro $H$ se encuentra en la circunferencia con centro en $A$ y radio $H$, $(A, AH)$.

Por el teorema 3 sabemos que $H$, $G$ y $O$ son colineales y que $HO = 3GO$, por lo que $H$ y $G$ se encuentran en homotecia desde $O$.

Entonces, a $(A, AH)$ le aplicamos una homotecia con centro en $O $ y razón $\dfrac{1}{3}$, esto será una circunferencia $\Gamma$ y $G$ resultara de la intersección de $\Gamma$ con $(A, AG)$.

Figura 7

Teniendo a $G$ construido, como tenemos el circuncírculo $(O, OA)$ y un vértice del triángulo, el problema se reduce a la solución del problema 2 de la entrada anterior.

$\blacksquare$

Distancia entre puntos notables

Teorema 4. Para un triángulo con lados $a$, $b$, $c$, ortocentro $H$, centroide $G$, y circuncírculo $(O, R)$ tenemos:
$OH^2 = 9R^2 – (a^2 + b^2 + c^2)$,
$HG^2 = 4R^2 – \dfrac{4}{9}( a^2 – b^2 + c^2)$.

Demostración. Por el teorema 3 sabemos que $OH = 3OG$ y $HG = 2GO$, además en la entrada anterior calculamos
$OG^2 = R^2 – (\dfrac{a^2 + b^2 + c^2}{9})$.

Por lo tanto,
$OH^2 = 9OG^2 = 9R^2 – (a^2 + b^2 + c^2)$,
$HG^2 = 4OG^2 = 4R^2 – \dfrac{4}{9}(a^2 + b^2 + c^2)$.

$\blacksquare$

Corolario. Podemos calcular la suma de los cuadrados de las distancias del ortocentro a los vértices del triángulo en función del circunradio y los lados del triángulo con la siguiente fórmula.
$HA^2 + HB^2 + HC^2 = 12R^2 + (a^2 + b^2 + c^2)$.

Demostración. Por el teorema 4, y usando las fórmulas encontradas en la entrada anterior
$HA^2 + HB^2 + HC^2 = GA^2 + GB^2 + GC^2 + 3HG^2$,
$GA^2 + GB^2 + GC^2 = \dfrac{a^2 + b^2 + c^2}{3}$ .

Esto implica que,
$HA^2 + HB^2 + HC^2 = \dfrac{a^2 + b^2 + c^2}{3} + 12R^2 – \dfrac{4}{3}(a^2 + b^2 + c^2)$
$= 12R^2 – (a^2 + b^2 + c^2)$.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos otro triángulo asociado a un triángulo dado, aquel cuyos vértices son los pies de las alturas del triángulo dado.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que el triángulo complementario y el triángulo anticomplementario de un triángulo dado son homotéticos, encuentra el centro y la razón de homotecia.
  2. Sea $\triangle ABC$ y $P$ un punto en el plano, considera $A’$, $B’$ y $C’$ los pies de las perpendiculares dese $P$ a $BC$, $AC$ y $AB$ respectivamente. Desde los puntos medios de $A’B’$, $A’C’$ y $B’C’$ traza perpendiculares a los lados de $AB$, $AC$ y $BC$ respectivamente, muestra que este último conjunto de perpendiculares son concurrentes.
  3. Sean $D$, $D’ \in BC$ de un triangulo $\triangle ABC$, tal que el punto medio de $BC$ es el punto medio de $DD’$, sea $E = AD \cap B’C’$, donde $B’$ y $C’$ son los puntos medios de $AC$ y $AB$ respectivamente, muestra que $ED’$ pasa por el centroide de $\triangle ABC$.
  4. Muestra que la recta de Euler de un triángulo pasa por uno de los vértices del triángulo si y solo si el triángulo es isósceles o rectángulo.
  5. Prueba que la recta que une el centroide de un triangulo con un punto $P$ en su circuncírculo biseca al segmento que une el punto diametralmente opuesto a $P$ con el ortocentro.
  6. Sean $H$, $G$, $(O, R)$ y $(I, r)$, el ortocentro, el centroide, el circuncírculo y el incírculo de un triángulo, muestra que:
    $i)$ $HI^2 + 2OI^2 = 3(IG^2 + 2OG^2)$,
    $ii)$ $3(IG^2 + \dfrac{HG^2}{2}) – IH^2 = 2R(R – 2r)$.

Entradas relacionadas

Fuentes

  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 68-69, 94-96, 101-102.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 18-19.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 65-68.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Ángulos en la circunferencia

Por Rubén Alexander Ocampo Arellano

Introducción

Dados un ángulo y una circunferencia nos podemos preguntar si podemos calcular la magnitud del ángulo dado con algún ángulo que tenga como vértice el centro de la circunferencia dada. En esta entrada estudiaremos algunos resultados que nos permitirán establecer dicha relación.

Definición 1. Un ángulo central en una circunferencia es un ángulo formado por dos radios.

Denotamos a una circunferencia con centro en $O$ como $\Gamma (O)$.

Ángulo inscrito

Definición 2. Decimos que un segmento es una cuerda de una circunferencia si sus extremos pertenecen a la circunferencia y el segmento no contiene al centro de la circunferencia, si contiene al centro entonces es un diámetro.

Un ángulo inscrito en una circunferencia es un ángulo formado por dos cuerdas o una cuerda y un diámetro que tienen un extremo en común sobre la circunferencia.

Teorema 1, de la medida del ángulo inscrito. Un ángulo inscrito en una circunferencia es igual a la mitad del ángulo central que abarca el mismo arco de circunferencia.

Demostración. Sea $\angle CBA$ un ángulo inscrito en $\Gamma (O)$.

Caso 1. $BC$ es diámetro, entonces $\triangle AOB$ es isósceles y por tanto $\angle BAO = \angle CBA$.

Figura 1

Como $\angle COA$ es un ángulo exterior de $\triangle AOB$ entonces es igual a la suma de los ángulos interiores no adyacentes a él,
$\Rightarrow \angle COA = \angle CBA + \angle BAO = 2\angle CBA$
$\Rightarrow \angle CBA = \dfrac{\angle COA}{2}$.

Caso 2. Ambos lados del ángulo son cuerdas, trazamos el diámetro $BO$ y consideramos $D = BO \cap \Gamma (O)$.

Si $AB$ y $BC$ están en un mismo lado respecto de $BD$ (izquierda figura 2), entonces
$\angle CBA = \angle DBA – \angle DBC$ y por el caso 1,
$\Rightarrow \angle CBA = \dfrac{\angle DOA}{2} – \dfrac{\angle DOC}{2} = \dfrac{\angle COA}{2}$.

Figura 2

Si $AB$ y $BC$ están en lados distintos respecto de $BD$ (derecha figura 2), entonces
$\angle CBA = \angle CBD + \angle DBA$ y por el caso 1,
$\Rightarrow \angle CBA = \dfrac{\angle COD}{2} + \dfrac{\angle DOA}{2} = \dfrac{\angle COA}{2}$.

$\blacksquare$ 

Ángulo semiinscrito

Definición 3. Decimos que una recta es tangente a una circunferencia en un punto si la recta es perpendicular al radio que pasa por el punto.  

Definición 4. Decimos que un ángulo es semiinscrito en una circunferencia, si el ángulo está formado por una recta tangente a la circunferencia y una cuerda que tiene como extremo el punto de tangencia.

Teorema 2, de la medida del ángulo semiinscrito. Un ángulo semiinscrito en una circunferencia es igual a la mitad del ángulo central que abarca el mismo arco de circunferencia.

Demostración. Sea $\angle CBA$ un ángulo inscrito en $\Gamma (O)$, con $AB$ tangente a $\Gamma (O)$ en $B$, consideremos $D = BO \cap \Gamma (O)$.

Figura 3

$\angle DBC$ es inscrito, por el teorema 1, $\angle DBC = \dfrac{\angle DOC}{2}$
$\Rightarrow \angle CBA = \angle DBA – \angle DBC = \dfrac{\pi}{2} – \dfrac{\angle DOC}{2}$
$= \dfrac{\angle DOB}{2} – \dfrac{\angle DOC}{2} = \dfrac{\angle COB}{2}$.

Por otro lado, consideremos $A’ \in AB$ pero del lado opuesto a $A$ respecto de $B$, entonces,
$\angle A’BC = \angle ABD + \angle DBC = \dfrac{\pi}{2} + \dfrac{\angle DOC}{2}$
$= \dfrac{\angle BOD}{2} + \dfrac{\angle DOC}{2} = \dfrac{\angle BOC}{2}$.

$\blacksquare$ 

Ángulo interior

Definición 5. Si el vértice de un ángulo está en el interior de una circunferencia decimos que el ángulo es interior a la circunferencia.

Teorema 3, de la medida del ángulo interior. Un ángulo interior a una circunferencia es igual a la semisuma del ángulo central que abarca el mismo arco que el ángulo interior y del ángulo central que abarca el mismo arco que el opuesto por el vértice.

Demostración.  Sea $\angle ABC$ un ángulo interior a $\Gamma (O)$ con $A$, $C \in \Gamma (O)$, consideremos $A’ = AB \cap \Gamma (O)$ y $C’ = CB \cap \Gamma (O)$.

Figura 4

Como $\angle ABC$ es un ángulo exterior de $\triangle A’BC$ es igual a la suma de los ángulos interiores no adyacentes a él, además $\angle AA’C$ y  $\angle A’CC’$ son inscritos y por el teorema 1,
$\Rightarrow \angle ABC = \angle AA’C + \angle A’CC’ = \dfrac{\angle AOC + \angle A’OC’}{2}$.

$\blacksquare$ 

Ángulo exterior (lados secantes)

Definición 6. Una recta secante a una circunferencia es una recta que la interseca en dos puntos distintos.

Definición 7. Decimos que un ángulo es exterior a una circunferencia si su vértice se encuentra fuera de la circunferencia y los lados que forman el ángulo son tangentes o secantes a la circunferencia.

Teorema 4, de la medida del ángulo exterior. Un ángulo exterior a una circunferencia es igual a la mitad de la diferencia de los ángulos centrales que abarcan arcos cuyos extremos son las intersecciones de cada lado del ángulo con la circunferencia.

Caso 1. Ambos lados del ángulo son secantes a la circunferencia.

Demostración. Sea $\angle BAC$ un ángulo exterior a $\Gamma (O)$.

Supongamos que $B$, $C \in \Gamma (O)$ y consideremos $B’ = AB \cap \Gamma (O)$ y $C’ = AC \cap \Gamma (O)$.

Veamos primero el caso particular en el que $CC’$ es diámetro entonces $\angle BC’C$ es un ángulo exterior de $\triangle AC’B$, por tanto,
$\angle BC’C = \angle A + \angle C’BB’$

Figura 5

Como $\angle BC’C$ y $\angle C’BB’$ son ángulos inscritos, por el teorema 1,
$\Rightarrow \angle A = \angle BC’C – \angle C’BB’ = \dfrac{\angle BOC – \angle C’OB’}{2}$.

Para el caso general sean $D$ y $E$ las intersecciones de $AO$ con $\Gamma (O)$.

Si $B$ y $C$ están en lados distintos respecto de $DE$ (izquierda figura 6), entonces
$\angle A = \angle BAE + \angle EAC$, y por el caso particular,
$\Rightarrow \angle BAE = \dfrac{\angle BOE – \angle DOB’}{2}$ y $\angle EAC = \dfrac{\angle EOC – \angle C’OD}{2}$
$\Rightarrow \angle A = \dfrac{\angle BOE + \angle EOC – (\angle C’OD + \angle DOB’)}{2} = \dfrac{\angle BOC – \angle C’OB’}{2}$.

Figura 6

Si $B$ y $C$ están en el mismo lado respecto de $DE$ (derecha figura 6), entonces
$\angle BAC = \angle BAE – \angle CAE$ y por el caso particular, 
$\angle BAE = \dfrac{\angle BOE – \angle DOB’}{2}$ y $\angle CAE = \dfrac{\angle COE – \angle DOC’}{2}$
$\Rightarrow \angle A = \angle BAC = \dfrac{(\angle BOE – \angle COE) – (\angle DOB’ – \angle DOC’)}{2} = \dfrac{\angle BOC – \angle C’OB’}{2}$.

$\blacksquare$ 

Ángulo exterior (lados tangentes)

Caso 2. Ambos lados del ángulo son tangentes a la circunferencia.

Demostración. Sea $\angle BAC$ un ángulo exterior a $\Gamma (O)$.

Supongamos que $B$, $C \in \Gamma (O)$ y consideremos $D$ y $E$ las intersecciones de $AO$ con $\Gamma (O)$.

Figura 7

Como $\angle BDE$ y $\angle EDC$ son ángulos exteriores de $\triangle ADB$ y $\triangle ADC$ respectivamente, entonces
$\angle BDE = \angle BAD + \angle DBA$ y $\angle EDC = \angle DAC + \angle ACD$
$\Rightarrow \angle A = \angle BAD + \angle DAC = (\angle BDE – \angle DBA) + (\angle EDC – \angle ACD)$
$ = (\angle BDE + \angle EDC) – (\angle ACD + \angle DBA) = \angle BDC – (\angle ACD + \angle DBA)$

$\angle ACD$ y $\angle DBA$ son ángulos semiinscritos y $\angle BDC$ es un ángulo inscrito, por los teoremas 1 y 2 tenemos
$\angle ACD = \dfrac{\angle COD}{2}$, $\angle DBA = \dfrac{\angle DOB}{2}$ y $\angle BDC = \dfrac{\angle BOC}{2}$,  
$\Rightarrow \angle A = \dfrac{\angle BOC – (\angle COD + \angle DOB)}{2} = \dfrac{\angle BOC – \angle COB}{2}$.

$\blacksquare$ 

Caso 3. Un lado del ángulo es tangente a la circunferencia y el otro es secante.

La demostración de este caso queda como ejercicio.

Ejemplos

Proposición 1. Dos ángulos ya sean inscritos o semiinscritos que abarcan el mismo arco de circunferencia son iguales.

Demostración. Por los teoremas 1 y 2, un ángulo inscrito y un ángulo semiinscrito son iguales a la mitad del ángulo central que abarca el mismo arco, si dos ángulos abarcan el mismo arco entonces el ángulo central es el mismo para ambos y por transitividad son iguales.

$\blacksquare$ 

Figura 8

Teorema 5, de Tales. Sean $A$, $B$ y $C$ puntos distintos en una circunferencia entonces $BC$ es diámetro si y solo si $A$ es un ángulo recto.

 Demostración. Sea $\Gamma (O)$ la circunferencia a la que pertenecen $A$, $B$ y $C$, el resultado se sigue del hecho de que el ángulo central que abarca el mismo arco que $\angle A$ es $\angle BOC$ y aplicar el teorema del ángulo inscrito.

$\blacksquare$ 

Figura 9

Problema. Dado un círculo $\Gamma$ construir su centro.

Solución. Construimos dos ángulos rectos inscritos en la circunferencia, tomando dos puntos distintos como vértice.

Por el teorema de Tales, las intersecciones de los lados de cada ángulo formaran dos diámetros distintos de la circunferencia y su intersección será el centro de la circunferencia.

$\blacksquare$ 

Figura 10

Proposición 2. Las rectas tangentes trazadas desde un punto exterior a una circunferencia son iguales.

Demostración. Sean $\Gamma (O)$ y $A$ un punto exterior, por $A$ trazamos $AB$ y $AC$ tangentes a $\Gamma (O)$ en $B$ y en $C$ respectivamente (figura 7).

Consideremos los radios $OB$ y $OC$ entonces $OB = OC$, y por definición de tangencia, $OB \perp AB$ y $OC \perp AC$.

Los triángulos rectángulos $\triangle AOB$ y $\triangle AOC$ tienen a $AO$ como lado en común, por criterio de congruencia hipotenusa-cateto $\triangle AOB \cong \triangle AOC$, por tanto, $AB = AC$.

$\blacksquare$ 

Más adelante…

Apoyándonos de los resultados vistos aquí, en la siguiente entrada daremos una caracterización de arco de circunferencia y veremos la circunferencia de Apolonio.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Sean $A$ y $C$ dos puntos fijos en una circunferencia, muestra que para cualesquiera dos puntos $B$ y $D$ en la misma circunferencia se tiene que $\angle ABC = \angle ADC$ o $\angle ABC$ y $\angle CDA$ son suplementarios.
  2.  Prueba que una recta es tangente a una circunferencia si y solo si la recta y la circunferencia tienen un solo punto en común.
  3. Demuestra el teorema 4 en el caso en el que el un lado del ángulo exterior es secante a la circunferencia y el otro es tangente, es decir, en la figura 11 muestra que
    $\angle BAC = \dfrac{\angle BOC – \angle COD}{2}$.
Figura 11
  1. Dados una circunferencia y un punto fuera de ella, construye las rectas tangentes a la circunferencia dada trazadas desde el punto dado.
  2. Sean $\triangle ABC$, $K$ la intersección de la altura trazada desde $A$ con el circuncírculo de $\triangle ABC$ y $H$ el ortocentro de $\triangle ABC$, muestra que $BC$ biseca a $HK$.
Figura 12

Entradas relacionadas

Fuentes

  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 133-140.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 34-40.
  • Wikipedia
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Puntos notables del triángulo

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada estudiamos la concurrencia de rectas importantes en el triangulo, a saber, las medianas, mediatrices, bisectrices y alturas. Mencionamos también consecuencias inmediatas de los puntos de concurrencia.

Centroide

Teorema 1. Las medianas de todo triángulo concurren en un punto que las triseca.

Demostración. Sean $\triangle ABC$, $B’$ y $C’$ los puntos medios de $AC$ y $AB$ respectivamente, por el teorema del segmento medio sabemos que $C’B’ = \dfrac{BC}{2}$ y $C’B’ \parallel BC$.

Figura 1

Sea $G$ la intersección de las medianas $BB’$ y $CC’$, en $\triangle GBC$ consideremos $M$ y $N$ los puntos medios de los lados $GB$ y $GC$ respectivamente, entonces
$MN = \dfrac{BC}{2}$ y $MN \parallel BC$.

Por transitividad $C’B’ = MN$ y $C’B’ \parallel MN$, esto implica que $\square C’MNB’$ es un paralelogramo y por lo tanto sus diagonales se bisecan, es decir,
$C’G = GN$ y $MG = GB’$.

Por construcción, $MG = BM$ y $GN = NC$
$\Rightarrow GB’= \dfrac{BB’}{3}$ y $C’G = \dfrac{CC’}{3}$,
esto es, la medianas $BB’$ y $CC’$ se trisecan

Si repetimos el mismo procedimiento pero ahora con las medianas $AA’$ y $BB’$ encontraremos un punto $G’$ en donde las medianas se trisecaran, $G’B’= \dfrac{BB’}{3}$ y $G’A’ = \dfrac{AA’}{3}$.

Como $GB’= \dfrac{BB’}{3} = G’B’$, concluimos que $G’ = G$.

Por lo tanto, las medianas de un triángulo concurren en un punto que las triseca.

$\blacksquare$

Definición 1. Decimos que el punto en que concurren las medianas de un triángulo es el gravicentro, baricentro o centroide del triángulo y lo denotamos con la letra $G$ mayúscula.

Figura 2

Circuncentro

Teorema 2. Las mediatrices de los lados de todo triángulo son concurrentes.

Demostración. Sea $\triangle ABC$, consideremos las mediatrices $l_c$ y $l_b$ de $AB$ y $AC$ respectivamente y $O = l_b \cap l_c$.

Figura 3

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la mediatriz de un segmento si y solo si equidista a los puntos extremos del segmento.

Ya que $O \in l_c$ y $O \in l_b$, entonces $OA = OB$ y $OA = OC$
$\Rightarrow OB = OC$.

Por el resultado mencionado anteriormente $OB = OC$ implica que $O \in l_a$, la mediatriz de $BC$.

Por lo tanto, las mediatrices de un triángulo son concurrentes.

$\blacksquare$

Corolario. Tres puntos distintos y no colineales se encuentran en una única circunferencia.

Demostración. Sea $\triangle ABC$, por el teorema anterior las mediatrices de los segmentos determinados por los vértices del triángulo concurren en un punto $O$ cuya distancia a cada uno de los vértices es la misma $R = OA = OB = OC$.

Por definición de circunferencia, $A$, $B$ y $C$ pertenecen a la circunferencia con centro en $O$ y radio $R$, $A$, $B$, $C \in (O, R) = \Gamma$.

Ahora supongamos que existe $\Gamma’ = (O’, R’)$ tal que $A$, $B$, $C \in \Gamma’$, entonces, por definición, $O’A = O’B = O’C = R’$.

Esto implica que $O’ \in l_a$, $O’ \in l_b$ y $O’ \in l_c$, las mediatices de $BC$, $AC$ y $AB$ respectivamente,
$\Rightarrow O \in l_a \cap l_b \cap l_c$.

Como ya probamos que las mediatrices son concurrentes entonces $O’ = O$ y $R’ = R$, así que $\Gamma$ es única.

$\blacksquare$

Definición 2. Al punto de concurrencia de las mediatrices de los lados de un triángulo le llamamos circuncentro y lo denotamos como $O$.

A la distancia constante de $O$ a los vértices del triángulo le llamamos circunradio denotado con la letra $R$ mayúscula.

A la circunferencia única $(O, R)$ determinada por los vértices del triángulo se le conoce como circuncírculo.

Figura 4

Incentro

Teorema 3. Las bisectrices interiores de todo triángulo son concurrentes.

Demostración. Sean $l_B$ y $l_C$ las bisectrices de los ángulos interiores en $\angle B$ y $\angle C$ respectivamente e $I = l_{B} \cap l_{C}$.

Figura 5

En la entrada desigualdad del triángulo y lugar geométrico mostramos que un punto está en la bisectriz de un ángulo si y solo si equidista a los lados que forman el ángulo. Recordemos que la distancia de un punto a una recta es la longitud del punto al pie de la perpendicular a la recta trazada desde el punto.

Denotamos la distancia de un punto $P$ a una recta $l$ como $(P, l)$.

Como $I \in l_{b}$ e $I \in l_{c}$, entonces $(I, AB) = (I, BC)$ y $(I, BC) = (I, AC)$,
$\Rightarrow (I, AB) = (I, AC)$.

Por el resultado citado anteriormente, $(I, AB) = (I, AC)$ implica que $I \in l_A$, la bisectriz interior de $\angle A$.

Por tanto, las bisectrices interiores de un triángulo son concurrentes.

$\blacksquare$

Si consideramos los pies de las perpendiculares a los lados del triángulo trazados desde el punto en que concurren las bisectrices, encontramos tres puntos distintos que equidistan a un punto fijo y por el corolario anterior estos determinan una única circunferencia, esto motiva la siguiente definición.

Definición 3. Al punto de concurrencia de las bisectrices interiores de un triángulo se le conoce como incentro del triángulo y lo denotamos con la letra $I$ mayúscula.

A la distancia de $I$ a los lados del triángulo le llamamos inradio y lo denotamos como $r = (I, AB) = (I, BC) = (I, AC)$.

La circunferencia con centro en $I$ y radio $r$, $(I, r)$, se llama incírculo.

Figura 6

Excentros

Teorema 4. En todo triángulo las bisectrices exteriores de dos ángulos y la bisectriz interior del tercer ángulo son concurrentes.

Demostración. Sea $\triangle ABC$, $l_A$ y $l_C$ las bisectrices exteriores de $\angle A$ y $\angle C$ respectivamente e $I_b = l_A \cap l_C$.

Figura 7

De manera análoga al caso de las bisectrices internas tenemos que
como $I_b \in l_A$ e $I_b \in l_C$, entonces $(I_b, AB) = (I_b, AC)$ y $(I_b, AC) = (I_b, BC)$,
$\Rightarrow (I_b, AB) = (I_b, BC)$.

Como $I_b$ está en la región acotada por el ángulo $\angle CBA$ entonces $I \in l_B$, la bisectriz interior de $\angle B$.

Por lo tanto, la bisectriz interna de $\angle B$ y las bisectrices externas de $A$ y $C$ son concurrentes.

De manera análoga probamos que las bisectrices externas de $\angle A$ y $\angle B$ concurren con la bisectriz interna de $\angle C$, y las bisectrices externas de $\angle B$ y $\angle C$ concurren con la bisectriz interna de $\angle A$.

$\blacksquare$

Similarmente a como lo hicimos con el incentro, notamos que, para cada uno de estos tres puntos de concurrencia, existen tres puntos distintos, uno en cada lado del triángulo que equidistan a un punto fijo y por lo tanto determinan una única circunferencia.

Definición 4. A los puntos en que concurren dos bisectrices externas y una bisectriz interna de un triángulo les llamamos excentros del triángulo y los denotamos como $I_a$, $I_b$ e $I_c$ de acuerdo a si se encuentran en la bisectriz interna de $\angle A$, $\angle B$ o $\angle C$ respectivamente y decimos que son opuestos a dichos vértices.

Las distancias de $I_a$, $I_b$ e $I_c$ a los lados del triángulo son los exradios y se les denota como $r_a$, $r_b$ y $r_c$ respectivamente.

A las circunferencias $(I_a, r_a)$, $(I_b, r_b)$ y $(I_c, r_c)$ se les conoce como excírculos del triángulo.

Figura 8

Ortocentro

Teorema 5. Las alturas de todo triángulo son concurrentes.

Demostración. Sea $\triangle ABC$, tracemos en cada vértice la paralela al lado opuesto.

Sean $A’$ la intersección de la paralela a $AB$ trazada en $C$ con la paralela a $AC$ trazada en $B$, de manera análoga definimos $B’$ y $C’$.

Figura 9

Por construcción, $\square ABCB’$ es un paralelogramo por lo que $AB’ = BC$, también $\square C’BCA$ es paralelogramo así que $C’A = BC$,
$\Rightarrow AB’ = BC = C’A \Rightarrow A$ es el punto medio de $C’B’$.

De manera similar podemos ver que $B$ es el punto medio de $C’A’$ y $C$ es el punto medio de $A’B’$.

En consecuencia, las alturas del triángulo $\triangle ABC$ son las mediatrices del triángulo $\triangle C’A’B’$ y ya probamos que las mediatrices de los lados de todo triangulo son concurrentes, por lo tanto, las alturas de $\triangle ABC$ son concurrentes.

$\blacksquare$

Definición 5. Al punto en común en que las tres alturas de un triángulo se intersecan le llamamos ortocentro y lo denotamos con la letra $H$ mayúscula.

Figura 10

Más adelante…

En la siguiente entrada demostraremos algunos teoremas que nos permitirán calcular la magnitud de ángulos relativos a una circunferencia.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Qué puntos notables vistos en esta entrada, caen siempre dentro del triangulo y cuales siempre fuera?
  2. Muestra que una recta paralela a un lado de un triangulo a través del centroide divide el área del triangulo en dos partes tal que la razón de esta áreas es $\dfrac{4}{5}$.
  3. Considera un triangulo rectángulo $\triangle ABC$ con $\angle B = \dfrac{\pi}{2}$, sean $CC’$ la mediana por $C$ y $D$ el pie de la perpendicular a $CC’$ trazada desde $B$ (figura 11), calcula la distancia de $D$ al centroide $G$ del triangulo en términos de los catetos.
Figura 11
  1. Un triángulo rectángulo tiene un ángulo interior de $\dfrac{\pi}{3}$, calcula la distancia del vértice donde se intersecan los catetos al incentro $I$ del triángulo en términos de la hipotenusa.
  2. Sea $\triangle ABC$ un triángulo tal que la mediana $AD$ es perpendicular a la mediana $BE$, encuentra $AB$ si $BC = a$ y $AC = b$.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 29-34.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 65-94.
  • Geometría interactiva

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»