Archivo de la etiqueta: matematicas

1.10. BASE DE ESPACIOS VECTORIALES: obtención a partir de un conjunto linealmente independiente o generador

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

De cualquier subconjunto finito de nuestro espacio, podemos obtener un generador o un l.i. y cuando lo obtengamos, bastará con centrarnos en la cardinalidad para reducir, o bien, completar, y obtener una base.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita.
a) Todo conjunto generador finito se puede reducir a una base.
b) Todo conjunto linealmente independiente se puede completar a una base.

Demostración:

a) En la demostración de la proposición que se encuentra en la entrada anterior tomamos un conjunto generador finito $S$ de un espacio vectorial arbitrario y recursivamente tomamos subconjuntos propios de $S$ hasta que uno de esos subconjuntos fuera base. Usando el mismo método, reducimos cualquier conjunto generador de $V$ para obtener una base.

b) Sea $S\subseteq V$ un conjunto l.i.
Ya sabemos que $S$ es finito por ser un subconjunto l.i. de $V$ de dimensión finita (observación en la entrada anterior).

Caso 1. Si $\langle S \rangle = V$, entonces $S$ es base de $V$ por definición.

Caso 2. Si $\langle S \rangle \subsetneq V$, entonces existe $v_1\in V$ tal que $v_1\notin \langle S \rangle$. Por lo tanto, $\langle S \rangle \cup \{ v_1 \}$ es l.i.

Subaso 1. Si $\langle \langle S \rangle \cup \{ v_1 \} \rangle = V$, entonces $S$ es base de $V$ por deifinición.

Subcaso 2. Si $\langle \langle S \rangle \cup \{ v_1 \} \rangle \subseteq V$, entonces existe $v_2\in V$ tal que $v_2\notin \langle \langle S \rangle \cup \{ v_1 \} \rangle$ Por lo tanto, $\langle \langle S \rangle \cup \{ v_1 \} \cup \{ v_2 \} \rangle$ es l.i.

Este proceso no es infinito porque los suconjuntos l.i de $V$ deben ser finitos.

Sea $m$ el número de elementos de $V$ que tuvimos que «aumentar» a $\langle S \rangle$ en los subcasos del caso 2, entonces $\langle \langle S \rangle \cup \{ v_1 \} \cup \{ v_2 \} \cup … \{ v_m \} \rangle$ es base de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial tal que $dim_K(V)=n$.
a) Cualquier conjunto generador con $n$ elementos es una base de $V$.
b) Cualquier conjunto linealmente independiente con $n$ elementos es una base de $V$.

Demostración: Por definición de base tenemos que toda base $B$ de $V$ cumple que $|B|=dim_K(V)=n$. Es decir, toda base de $V$ tiene $n$ elementos.

a) Sea $S\subseteq V$ generador con $n$ elementos.
Por el teorema anterior podemos reducir $S$ a una base.
Pero reducir $S$ a un conjunto de $n$ elementos implica que se conserva íntegro.
Por lo tanto $S$ es base.

b) Sea $S\subseteq V$ linealmente independiente.
Por el teorema anterior podemos completarlo a una base.
Pero completar $S$ a un conjunto de $n$ elementos implica que se conserva íntegro.
Por lo tanto $S$ es base.

Ejemplo

Sea $K=\mathbb{R}, V=\mathcal{M}_{2\times 2}(\mathbb{R})$.
Sea $W=\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\rangle$

Por construcción, $W$ es el subespacio generado por $X=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\}$
Encontremos un subconjunto de $X$ que sea base de $W$.

Observemos que $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}-\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $X$ es l.d. y como $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, entonces $W=\langle X\rangle = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\rangle$

Veamos que $B=\left\{\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}-\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right\}$ es l.i.

Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}+\lambda_2\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

De donde $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\lambda_1, \lambda_1+\lambda_2, \lambda_3, \lambda_2+\lambda_3=0$.
Por lo tanto, $\lambda_1=\lambda_2=\lambda_3=0$.

Como $\langle B\rangle=W$ y $B$ es l.i., entonces $B$ es base y obtenemos que $dim_\mathbb{R}W=|B|=3$

Teorema: Sean $V$ un $K$ – espacio vectorial de dimensión finita y $W$ un subespacio de $V$. Entonces se cumple lo siguiente:

a) $W$ es de dimensión finita
b) Toda base de $W$ se puede completar a una base de $V$
c) $dim_KW\leq dim_KV$
d) Si $dim_KW=dim_KV$, entonces $W=V$

Demostración: Analicemos cada inciso por separado:

a) Sup. por reducción al absurdo que $W$ no es de dimensión finita.
Entonces existe $B$ base de $W$ de cardinalidad infinita.
Así, $B$ es un subconjunto de $V$ que es l.i.
Por el teorema anterior tenemos que podemos completar a $B$ para obtener una base de $V$, lo cual es una contradicción, pues existiría un abse de $V$ de cardinalidad infinita (pero por hipótesis, $V$ es de cardinalidad finita).
Por lo tanto, $W$ es de dimensión finita.

b) Sea $B$ una base de $W$.
Entonces $B$ es un subconjunto l.i. en $V$ y por el teorema anterior podemos completar $B$ a una base de $V$.

c) Sea $B$ una base de $W$.
Por el inciso anterior tenemos que podemos completar $B$ para obtener una base de $V$, es decir, $B\cup A$ es base de $V$ con $A\subseteq V$
Si $B\cup A=B$, entonces $dim_KW=|B|=dim_KV$.
Si $B\cup A\not= B$, $dim_KW=|B|\lneq|B\cup A|=dim_KV$
Por lo tanto, $dim_KW\leq\dim_KV$

d) Sup. $dim_KW=\dim_KV=n$
Sea $B$ una base de $W$.
Entonces $B$ es un l.i. en $V$ con $n$ elementos.
Por el corolario anterior tenemos que $B$ es base de $V$.
De donde $B$ es base de $V$.
Y así, $W=\langle B\rangle =V$.
Por lo tanto, $W=V$

Tarea Moral

Más adelante…

Veremos un nuevo concepto: Suma y suma directa de subespacios vectoriales.
¿Qué es? ¿Qué estructura tiene? ¿Dónde vive? ¿Qué relación tiene la suma de dos subespacios con sus uniones?

Entradas relacionadas

1.9. BASE, DIMENSIÓN Y ESPACIO DE DIMENSIÓN (IN)FINITA: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Si tenemos un espacio vectorial $V$ sabemos que suceden dos cosas en los subconjuntos:
1) De todo subconjunto linealmente dependiente (distinto de $\{\theta_V\}$ y $\emptyset$) podemos encontrar un subconjunto propio linealmente dependiente
2) A todo subconjunto de $V$ podemos «aumentarle» elementos de $V$ hasta crear un conjunto generador de $V$.

Para conseguir un conjunto l.i. necesitamos hacer el original «más pequeño» y para conseguir un generador necesitamos hacer el original «más grande».

La cardinalidad de un conjunto que cumpla ambas características se vuelve relevante.
Estudiaremos a continuación un conjunto lo «suficientemente grande» para generar al espacio y lo «suficientemente pequeño» para seguir siendo linealmente independiente.

BASE DE UN ESPACIO VECTORIAL

Definición: Sean $V$ un $K$ – espacio vectorial, $B\subseteq V$. Decimos que $B$ es una base de $V$ si genera a $V$ y es linealmente independiente. Además, decimos que $V$ es de dimensión finita si tiene una base finita.

Ejemplos

  • Sea $K$ un campo.
    La lista de $n$-adas $e_1=(1_K,0_K,0_K,0_K,…,0_K,0_K), e_2=(0_K,1_K,0_K,0_K,…,0_K,0_K),$ $…,e_n=(0_K,0_K,0_K,0_K,…,0_K,1_K)$ es l.i.
    Más aún, $\{ e_1,e_2,…,e_n\}$ es una base de $K^n$.

Justificación. Como $B =\{e_1,e_2,…,e_n\}$ es l.i., sólo falta ver que $\langle B\rangle =K^n$.
Sabemos que $K^n$ es un espacio vectorial y cada $e_i\in K^n$, entonces $\langle B\rangle\subseteq K^n$.
Ahora bien, sea $(x_1,x_2,…,x_n)\in K^n$.
Es claro que $(x_1,x_2,…,x_n)=x_1e_1+x_2e_2+…+x_ne_n\in\langle B\rangle$.
De donde $K^n\subseteq\langle B\rangle$.
$\therefore\langle B\rangle =K^n.$

  • Sea $W=\{(x,y,z)\in\mathbb{R}^3|x-y+2z=0\}$ que es un subespacio de $\mathbb{R}^3$.
    Tenemos que $1-1+2(0)=0$ y $-2-0+2(1)=0$, entonces $(1,1,0),(-2,0,1)\in W$.
    Resulta que $\{(1,1,0),(-2,0,1)\}$ es una base de $W$.

Justificación. Primero veamos que $B =\{(1,1,0),(-2,0,1)\}$ es l.i.
Sean $\lambda_1,\lambda_2\in\mathbb{R}$ tales que $\lambda_1(1,1,0)+\lambda_2(-2,0,1)=(0,0,0)$.
Entonces, $(\lambda_1-2\lambda_2,\lambda_1,\lambda_2)=(0,0,0)$.
Inmediatamente se concluye de lo anterior que $\lambda_1=\lambda_2=0$.
$\therefore B$ es l.i.
Como $W$ es un subespacio, entonces $\langle B\rangle\subseteq K^n$.
Ahora bien, sea $(x,y,z)\in W$.
Por definición de $W$ tenemos que $x=y-2z$, y en consecuencia $(x,y,z)=(y-2z,y,z)$.
Es claro que $(x,y,z)=(y-2z,y,z)=y(1,1,0)+z(-2,0,1)\in\langle B\rangle$.
Así, $W\subseteq\langle B\rangle$.
$\therefore\langle B\rangle.$

Proposición: Sea $V$ un $K$ – espacio vectorial. Si $V$ tiene un conjunto generador finito, entonces $V$ tiene una base finita.

Demostración: Sea $S=\{v_1,v_2,…,v_n\}$ un conjunto generador finito de $V$.

Caso 1. $S$ es l.i.
Entonces $S$ es una base finita de $V$.

Caso 2. $S$ es l.d.
Por el lema de dependencia lineal existe $v_{j_1}\in S$ tal que $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle $. Así, podemos definir el siguiente conjunto:
$S_1=S\setminus\{v_{j_1}\}$ donde $j_1\in\{1,2,…,n\}$ y $\langle S\setminus\{v_{j_1}\}\rangle =\langle S\rangle =V.$
Si $S_1$ es l.i., entonces $S_1$ es una base finita de $V$.
Si $S_1$ es l.d., entonces repetimos el proceso. Observemos que de esta forma vamos encontrando $S_1, S_2, \dots$ subconjuntos de $S$ con $n-1,n-2,\dots$ elementos respectivamente, tales que $\langle S_i \rangle =\langle S\rangle =V$ para toda $i=1,2,\dots$. Este proceso es finito ya que $S$ lo es, y termina después de a lo más $n$ pasos. El proceso termina en el momento en que encontramos un $S_t$ con $t\in\{1,\dots ,n\}$ subconjunto de $S$ tal que $S_t$ es l.i., y por la forma en que se construyeron los subconjuntos de $S$ en este proceso se tiene además que $\langle S_t \rangle =\langle S\rangle =V$.
Tenemos entonces que $S_t$ es una base finita de $V$.

Corolario: Sea $V$ un $K$ – espacio vectorial. $V$ tiene un conjunto generador finito si y sólo si $V$ es de dimensión finita.

Demostración: $\Rightarrow )$ Se cumple por el teorema anterior y la definición de espacio vectorial de dimensión finita.

$\Leftarrow )$ Por definición de espacio vectorial de dimensión finita, existe una base finita, es decir, un conjunto l.i. generador de cardinalidad finita, en particular esta base es un conjunto generador finito.

Obs. Si un $V$ espacio vectorial es de dimensión finita, entonces todo conjunto l.i. es finito.

Teorema: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Todas las bases de $V$ son finitas y tienen el mismo número de elementos.

Demostración: Por la observación previa tenemos que todas las bases de $V$ son finitas, pues en particular son conjuntos l.i. Veamos que todas tienen la misma cardinalidad.

Sean $B_1$ y $B_2$ bases de $V$, que son finitas por lo antes mencionado.

Por definición de bases tenemos:
a) $B_1$ es l.i., b) $B_1$ es generador de $V$, c) $B_2$ es l.i., d) $B_2$ es generador de $V$.

Recordando la relación entre conjuntos linealmente independientes y conjuntos generadores tenemos que:
a) y d) implican que $|B_1|\leq |B_2|$,
b) y c) implican que $|B_2|\leq |B_1|$.
$\therefore |B_1|=|B_2|.$

A lo largo de esta entrada hemos logrado concluir que, si bien las bases no son únicas, su cardinalidad (en el caso de las finitas) sí es única.

DIMENSIÓN DE UN ESPACIO VECTORIAL

Definición: Sea $V$ un $K$ – espacio vectorial de dimensión finita. Decimos que la dimensión de $V$ es la cardinalidad de cualquiera de sus bases. Se denota como $dim_K (V)$.

Ejemplos

  • Sea $V=\langle 2-x+5x^2,3-2x^2,7-2x+8x^2\rangle\leq\mathcal{P}_2[\mathbb{R}]$.
    Así, $dim_{\mathbb{R}}(V)=2$.

Justificación. Primero describamos los elementos de $V$ como combinaciones lineales.
Sea $a+bx+cx^2 \in V$. Entonces existen $\lambda,\mu,\nu\in\mathbb{R}$ tales que $\lambda (2-x+5x^2) + \mu (3-2x^2) + \nu (7-2x+8x^2)=a+bx+cx^2$
Entonces $(2\lambda + 3\mu +7\nu) + (-\lambda – 2\nu)x + (5\lambda – 2\mu + 8\nu)x^2=a+bx+cx^2$. Por lo tanto:
$2\lambda + 3\mu +7\nu=a$,
$-\lambda – 2\nu=b$,
$5\lambda – 2\mu + 8\nu=c$.

Tenemos entonces:

$\left( \begin{array}{rrr|r} 2 & 3 & 7 & a \\ -1 & 0 & -2 & b\\
5 & -2 & 8 & c \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 3 & 3 & a+2b\\ 0 & -2 & -2 & c+5b \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 1 & 1 & -\frac{1}{2}(c+5b) \end{array} \right)$$~\left( \begin{array}{rrr|r} -1 & 0 & -2 & b \\ 0 & 1 & 1 & \frac{1}{3}(a+2b)\\ 0 & 0 & 0 & -\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b) \end{array} \right)$

Así, $0=-\frac{1}{2}(c+5b) -\frac{1}{3}(a+2b)$.
Y esto ocurre si y sólo si $0=a+19b+c$.
Por lo tanto, $a=-19b-c$.

$W=\{ a+bx+cx^2 \in \mathcal{P}_2(\mathbb{R})| a=-19b-c \}$$=\{ (-19b-c)+bx+cx^2\in \mathcal{P}_2(\mathbb{R})| b,c\in\mathbb{R} \}$$=\{ b(-19+x)+c(-1+x^2)|b,c\in\mathbb{R} \}$$=\langle -19+x,-1+x^2 \rangle$.

Como $\{ -19+x,-1+x^2 \}$ es linealmente independiente y claramente genera a $W$, entonces es una base de $W$. Por lo tanto, $dim_{\mathbb{R}}(W)=2$.

Tarea Moral

Más adelante…

Partiendo de cualquier espacio vectorial de dimensión finita $V$, veremos cómo obtener bases. Además analizaremos qué relación hay entre: a) la dimensión de $V$ y las dimensiones de sus subespacios y b) la base de $V$ y las bases de sus subespacios.

Entradas relacionadas

1.8. CONJUNTOS LINEALMENTE (IN)DEPENDIENTES Y CONJUNTOS GENERADORES: relación entre sí

Por Jennyfer Paulina Bennetts Castillo

Lema (Dependencia lineal): Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista de vectores en $V$. Si $v_1,v_2,…,v_m$ es una lista l.d. y $v_1\not=\theta_V$, entonces existe $j\in\{2,3,…,m\}$ tal que
a) $v_j\in\langle\{v_1,v_2,…,v_{j-1}\}\rangle$ y
b) $\langle\{v_1,v_2,…,\widehat{v_j},…,v_m\}\rangle =\langle\{v_1,v_2,…,v_m\}\rangle$

Nota: $\langle\{v_1,v_2,…,v_{j-1},v_{j+1},…,v_m\}\rangle$ lo denotamos por $\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle$

Demostración: Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista l.d. con $v_1\not=\theta_V$.

(*) Como la lista es l.d., entonces existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no todos nulos tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.

a) De (*) observemos que por no ser todos nulos, tenemos dos casos:

Caso 1. Únicamente $\lambda_1\not=0_K$.
Así, $\theta_V=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m$$=\lambda_1v_1+0_Kv_2+…+0_Kv_m$$=\lambda_1v_1+\theta_V+…+\theta_V=\lambda_1v_1$.
De donde, $\lambda_1v_1=\theta_V$ con $\lambda_1\not=0_K$ y $v_1\not=\theta_V$.
Por lo tanto, este caso no es posible.

Caso 2. Existe al menos un $\lambda_j\not=0_K$ con $j\in\{2,3,…,m\}$.
Consideremos $j=m\acute{a}x\{i\in\{2,3,…,m\}|\lambda_i\not=0_K\}$
Entonces $\lambda_{j+1}v_{j+1}+…+\lambda_mv_m=0_Kv_{j+1}+…+0_Kv_m$$=\theta_V+…+\theta_V=\theta_V$ y además, existe el inverso multiplicativo de $\lambda_j.$
De lo anterior tenemos que $\theta_V=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m$$=\lambda_1v_1+\lambda_2v_2+…+\lambda_jv_j+\theta_V$$=\lambda_1v_1\lambda_2v_2+…+\lambda_jv_j.$
Así, $\lambda_1v_1+…+\lambda_jv_j=\theta_V$, por lo cual $\lambda_jv_j=-\lambda_1v_1-\lambda_2v_2…-\lambda_{j-1}v_{j-1},$
entonces

$\begin{array}{ll}v_j&=\lambda_j^{-1}(-\lambda_1v_1-\lambda_2v_2…-\lambda_{j-1}v_{j-1})\\&=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}\in\langle v_1,v_2,…,v_{j-1}\rangle\end{array}$

$\therefore v_j\in\langle v_1,v_2,…,v_{j-1}\rangle$

b) Veamos que se cumplen las dos contenciones entre los subconjuntos deseados, contemplando que la $j$ para este inciso debe ser la misma que en el inciso anterior.

En primer lugar:
Tenemos que $\{v_1,v_2,…,\widehat{v_j},…,v_m\}\subseteq \{v_1,v_2,…,v_j,…,v_m\}\subseteq\langle v_1,v_2,…,v_j,…,v_m\rangle$ y este último subconjunto es un subespacio de $V$.
Además, sabemos que si $S\subseteq W\subseteq V$ con $W$ un subespacio vectorial, entonces $\langle S\rangle\subseteq W$.
$\therefore\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle\subseteq\langle v_1,v_2,…,v_j,…,v_m\rangle$.

En segundo lugar:
Si $w\in\langle v_1,v_2,…v_j,…,v_m\rangle$, entonces existen $\mu_1,\mu_2,…,\mu_j,…,\mu_m\in K$ tales que $w=\mu_1v_1+\mu_2v_2+…+\mu_jv_j+…+\mu_mv_m$.
Sabemos que $v_j=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}$.
De donde,

\begin{array}{ll}w&=\mu_1v_1+\mu_2v_2+…+\mu_{j-1}v_{j-1}+\\ &\mu_j[(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}]+\\ &\mu_{j+1}v_{j+1}…+\mu_mv_m\\ &=(\mu_1-\mu_j\lambda_j^{-1}\lambda_1)v_1+(\mu_2-\mu_j\lambda_j^{-1}\lambda_2)v_2+\\ &…+(\mu_{j-1}-\mu_j\lambda_j^{-1}\lambda_{j-1})v_{j-1}+\mu_{j+1}v_{j+1}+…+\mu_mv_m\\ &\in\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle\end{array}
Así, $w\in\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle$.
$\therefore \langle v_1,v_2,…,v_j,…,v_m\rangle\subseteq\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle .$

Teorema: Sea $V$ un $K$ – espacio vectorial. Si $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$ con $m\in\mathbb{N}$, entonces todo conjunto generador de $V$ tiene al menos $m$ elementos.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$, llamémosle $L$ a esta lista.
Sea $S$ tal que $\langle S\rangle = V$.

Caso 1. $S$ es infinito.
Entonces $S$ tiene más de $m$ elementos.

Caso 2. $S$ es finito.
Digamos que $S=\{w_1,w_2,…,w_k\}$ y probemos que $m\leq k$.

Observemos que como $L$ es una lista l.i. de vectores en $V$, entonces para cada $i\in\{1,2,…,m\}$ tenemos que $v_i\not=\theta_V$.

(1) Como $ v_1\in V=\langle S\rangle$, entonces $v_1,w_1,w_2,…,w_k$ es una lista l.d.
Dado que $v_1\not= \theta_V$, por el lema podemos concluir que existe $j_1\in\{1,2,…,k\}$ tal que $\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =\langle v_1,w_1,w_2,…,w_k\rangle =V.$

(2) Como $ v_2\in V=\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle$, entonces $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es una lista l.d.
Dado que con $v_2\not= \theta_V$, por el lema podemos concluir que algún vector $v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, pero sabemos que $L$ es l.i., por lo que $v_2$ no puede ser combinación lineal de $v_1$. Así, existe algún vector $w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, digamos $w_{j_2}$ con $j_2\in\{1,2,…,k\}\setminus\{j_1\}$, que es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_{j_k}$, y tal que $\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1},w_{j_2}\}\rangle$$=\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =V.$

Continuando de este modo, en cada paso quitamos un vector $w_{j_t}$ del conjunto generador, y lo sustituimos por $v_t$, obteniendo de esta manera un nuevo conjunto generador. Observemos entonces que después de $t$ pasos hemos quitado $t$ vectores de $S$, y los hemos sustituido por $v_t,\dots ,v_2,v_1$.

Veamos que $k\geq m$. Supongamos por reducción al absurdo que $k< m$.

Continuando con el proceso anterior, después de $k$ pasos hemos quitado $k$ vectores de $S$, $w_{j_1},w_{j_2},…,w_{j_k}$ que de hecho son precisamente $w_1,w_2,…,w_k$ sólo que quizás en otro orden, y los hemos sustituido por $v_k,\dots ,v_2,v_1$. Tenemos además que:
$V=\langle \{v_{k-1},v_{k-2},…,v_2,v_1,w_1,w_2,…,w_k\}-\{w_{j_1},w_{j_2},…,w_{j_k}\}\rangle$$=\langle \{v_{k-1},v_{k-2},…,v_2,v_1\}\rangle$
Pero si $V=\langle \{v_{k-1},…,v_2,v_1\}\rangle$, entonces $v_k\in \langle \{v_{k-1},…,v_2,v_1\}\rangle$ y por lo tanto, $v_1,v_2,…,v_k$ es l.d.
Entonces $v_1,v_2,…,v_m$ es l.d., lo cual contradice nuestra hipótesis.

Por lo tanto, $m\leq k$.

Corolario: Sea $V$ un $K$-espacio vectorial. Si existe $S$ un subconjunto finito de $V$ generador con $k$ elementos, entonces todo conjunto linealmente independiente es finito y tiene a lo más $k$ elementos.
En consecuencia, no existen conjuntos infinitos l.i. en $V$.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $S\subseteq V$ finito con $k$ elementos tal que $\langle S\rangle =V$.
Sea $T\subseteq V$ un subconjunto l.i. Supongamos por reducción al absurdo que $T$ es infinito, consideremos entonces $\hat{T}$ un subconjunto de $T$ con $k+1$ elementos. Tenemos que $\hat{T}$ es un conjunto l.i. con $k+1$ elementos, y $S$ es un conjunto generador con $k$ elementos, lo que contradice el teorema anterior. Concluimos entonces que $T$ debe ser finito.
Nuevamente por el teorema anterior se cumple que $|T|\leq |S|$, y como $|S|=k$ entonces $|T|\leq k$.

Tarea Moral

  1. Demuestra que, dado $V$ un $K$ – espacio vectorial con $K$ un campo, sólo existe un subconjunto $S$ unitario linealmente dependiente y exhíbelo.
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V.$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $v_j\in \langle S-{v_j}\rangle$
  3. Recordando que $\{e_1,e_2,e_3\}$ genera a $\mathbb{R}^3$ y el Teorema de esta entrada sabemos que cualquier conjunto de solo $1$ o $2$ elementos, no podrá generar a $\mathbb{R}^3$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ arbitrario si $|S|=1$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ arbitrario si $|S|=2$.

Más adelante…

Ahora que sabemos la relación de cardinalidad que existe entre los conjuntos linealmente independientes y los conjuntos generadores, nos damos cuenta de que, dicho muy informalmente, los conjuntos generadores de un espacio vectorial $V$ tienen una cardinalidad mayor o igual a los l.i. en $V$.
Nos enfocaremos en aquellos conjuntos que son generadores del espacio vectorial $V$ al que pertenecen y linealmente independientes. Veremos algunas propiedades de sus cardinalidades.

Entradas relacionadas

1.7. (IN)DEPENDENCIA LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

En matemáticas es de mucho interés estudiar aquello que es único (por qué lo es, «quién» es y cómo encontrarlo). En este punto de la teoría, sabemos que el neutro aditivo de un campo $K$ cualquiera siempre existe y es único, al igual que el neutro de un $K$ – espacio vectorial $V$ cualquiera.

Sabemos que las combinaciones lineales son elementos del espacio vectorial donde estamos trabajando y ahora estudiaremos conjuntos de vectores y la(s) combinación(es) lineale(s) que podemos obtener igualadas al neutro de nuestro espacio vectorial. Este sutil detalle de que sea sólo una o resulten existir más combinaciones lineales que cumplan la igualdad será el centro del tema… al fin y al cabo, sí sabemos que al menos existe una: la trivial, obtenida si todos los escalares involucrados son el neutro aditivo del campo.

LISTA LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Una lista $v_1,v_2,…,v_m$$\in V$ en una lista linealmente dependiente si existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no nulos tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.
Decimos que es una lista linealmente independiente en caso contrario. Es decir, si $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ con $\lambda_1,\lambda_2,…,\lambda_m\in K$, entonces $\lambda_1,\lambda_2,…,\lambda_m=0_K$ necesariamente.

Nota: Es común abreviar «linealmente dependiente» con l.d. y «linealmente independiente» con l.i.

Ejemplos

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_3[\mathbb{R}]$
    Sean $v_1=1+x-x^2+2x^3$, $v_2=2-3x+x^3$, $v_3=4-x-2x^2+5x^3$
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Se cumple que $2v_1+1v_2-1v_3=0x^3+0x^2+0x+0=\theta_V$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^n$
    La lista $e_1,e_2,…,e_n$ es l.i.

Justificación. Tenemos que $e_i$ se define como el vector de $n$ entradas donde la $i$-ésima es $1$ y las demás son $0$. Así, $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(\lambda_1,\lambda_2,…,\lambda_n)$. Por lo que, si $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(0,0,…,0)=\theta_V$, entonces $(\lambda_1,\lambda_2,…,\lambda_n)=(0,0,…,0)$ y en consecuencia $\lambda_i=0$ para toda $i\in{1,2,…,n}.$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^2$
    Sean $v_1=(x_1,0)$, $v_2=(x_2,0)$, $v_3=(x_3,y_3)$ con $x_i\not= 0$ para toda $i\in\{1,2,3\}$.
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Consideremos $\lambda_1,\lambda_2,\lambda_3$ tales que
$\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0).$
Entonces $\lambda_1(x_1,0)+\lambda_2(x_2,0)+\lambda_3(x_3,y_3)=(0,0).$
Desarrollando el lado izquierdo de esta igualdad tenemos que $(\lambda_1x_1+\lambda_2x_2+\lambda_3x_3,y_3)=(0,0).$ Por lo tanto $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0)$ si y sólo si
a) $\lambda_1x_1+\lambda_2x_2+\lambda_3x_3=0$ y b) $\lambda_3y_3=0$.
Si $\lambda_3=0$, b) se cumple para cualesquiera $\lambda_1,\lambda_2\in\mathbb{R}$. Veamos si se le puede asignar un valor distinto de cero a $\lambda_1$ o a $\lambda_2$ y que se cumpla a).
Tenemos que a) se cumple si y sólo si $\lambda_1x_1=-(\lambda_2x_2+\lambda_3x_3)$. Por lo tanto, si $\lambda_3=0$, tenemos que $\lambda_1x_1=-\lambda_2x_2$, y dado que $x_1$ es no nulo esto implica que $\lambda_1=-\lambda_2\frac{x_2}{x_1}$. Así, eligiendo $\lambda_2=1$, $\lambda_1=-\frac{x_2}{x_1}$ y $\lambda_3=0$ se cumplen a) y b), existiendo así una combinación lineal no trivial de $v_1,v_2$ y $v_3$ igualada al vector cero.

CONJUNTO LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Un subconjunto $S$ de $V$ es un conjunto linealmente dependiente si existe $m\in\mathbb{N}^+$ tal que $S$ contiene $m$ elementos distintos que forman una lista dependiente.
Decimos que es un conjunto linealmente independiente en caso contrario. Es decir, si para cualquier $m\in\mathbb{N}^+$ todas las listas que se pueden formar con $m$ elementos distintos de $S$ son linealmente independientes.

Observación: Si $S$ es un conjunto finito con $m$ vectores distintos, digamos $\{v_1,v_2,…,v_m\}$, entonces:
i) Si se puede encontrar una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$ con al menos una $\lambda_j$ distinta de $0_K$ para alguna $j\in\{1,2,…,m\}$, entonces $S$ es l.d.
ii) Si el hecho de que se tenga una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$, implica que $\lambda_j$ debe ser $0_K$ para toda $j\in\{1,2,…,m\}$, entonces $S$ es l.i.

Ejemplos

  • Sean $K$ un campo y $V=\mathcal{P}_m(K)$
    $S=\{1,x,x^2,…,x^m\}$$\subseteq\mathcal{P}_m(K)$ es l.i.

Justificación. Sean $\lambda_0,\lambda_1,\lambda_2,…,\lambda_m\in\mathbb{R}$ tales que $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=\theta_V$, es decir $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=0+0x+0x^2+…+0x^m$.
Recordando que dos polinomios so iguales si y sólo si coinciden coeficiente a coeficiente concluimos que $\lambda_i=0$ para toda $i\in\{0,1,2,…,m\}.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(1,3,-7),(2,1,-2),(5,10,-23)\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1(1,3,-7)+\lambda_2(2,1,-2)+\lambda_3(5,10,-23)=(0,0,0)$.
Entonces $(\lambda_1+2\lambda_2+5\lambda_3,3\lambda_1+\lambda_2+10\lambda_3,-7\lambda_1-2\lambda_2-23\lambda_3)=(0,0,0)$. De donde:
\begin{align*}
\lambda_1+2\lambda_2+5\lambda_3&=0…(1)\\
3\lambda_1+\lambda_2+10\lambda_3&=0…(2)\\
-7\lambda_1-2\lambda_2-23\lambda_3&=0…(3)\\
\end{align*}
De $(1)$: $\lambda_1=-2\lambda_2-5\lambda_3…(4)$
Sustituyendo $(4)$ en $(2)$: $3(-2\lambda_2-5\lambda_3)+\lambda_2+10\lambda_3=0$
$\Longrightarrow-5\lambda_2-5\lambda_3…(5)\Longrightarrow\lambda_2=-\lambda_3…(5)$
Sustituyendo $(5)$ en $(4)$: $\lambda_1=-2(-\lambda_3)-5\lambda_3$
$\Longrightarrow\lambda_1=-3\lambda_3…(6)$
En particular, si $\lambda_3=1$tenemos que $\lambda_2=-1$ y $\lambda_1=-3$, y encontramos así una solución no trivial del sistema dado por $(1)$, $(2)$ y $(3)$.

  • Sean $K=\mathbb{R}$ y $V=\mathcal{M}_{2\times 2}(\mathbb{R})$
    $S=\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$\subseteq\mathcal{M}_{2\times 2}(\mathbb{R})$ es l.i.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} +\lambda_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Entonces $\begin{pmatrix} \lambda_1 & \lambda_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \lambda_2 \\ 0 & \lambda_2 \end{pmatrix}+ \begin{pmatrix} 0 & 0 \\ \lambda_3 & \lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. De donde:
\begin{align*}
\lambda_1&=0…(1)\\
\lambda_1+\lambda_2&=0…(2)\\
\lambda_3&=0…(3)\\
\lambda_2+\lambda_3&=0…(4)\\
\end{align*}
Sustituyendo $(1)$ en $(2)$: $\lambda_2=0$
Por lo tanto, $\lambda_1,\lambda_2,\lambda_3=0.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(n,n,n)|n\in\mathbb{Z}\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. La lista en $S$ dada por $(1,1,1),(5,5,5)$ es l.d. porque $-5(1,1,1)+(5,5,5)=(0,0,0)$.

Tarea Moral

Sean $K$ un campo y $V$ un $K$ – espacio vectorial.

  1. Sean $S,\tilde{S}\subseteq V$ tales que $S\subseteq\tilde{S}$.
    Para cada inciso, responde y justifica tu respuesta demostrándolo o dando un contraejemplo.
    • Si $S$ es l.d., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $S$ es l.i., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.d., ¿es posible determinar si $S$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.i., ¿es posible determinar si $S$ es l.d. o l.i.?
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $\langle S\rangle=\langle S-\{v_j\}\rangle$

Más adelante…

El segundo ejercicio de la tarea moral se refiere al subespacio generado por un conjunto linealmente dependiente.
Veamos ahora más relaciones que existen entre los conjuntos linealmente dependientes, los linealmente independientes y los espacios que estos conjuntos generan.

Entradas relacionadas

1.6. SUBESPACIO GENERADO POR UN CONJUNTO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. Diremos que el subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Si $W$ es un subespacio de $V$, se dice que $S$ genera a $W$, o que $S$ es un conjunto generador de $W$, si $\langle S\rangle =W$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas