Archivo de la etiqueta: lineal

Cálculo Diferencial e Integral II: Propiedades de la integral definida

Por Moisés Morales Déciga

Introducción

En las entradas anteriores se dio la motivación de la construcción de la integral y la definición de la integral de Riemann. Para que cierta integral exista, necesitamos que el ínfimo de ciertas sumas superiores coincida con el supremo de ciertas sumas inferiores. Vimos algunas condiciones que garantizan que esto suceda, por ejemplo, que exista el límite de las sumas superiores e inferiores para las particiones homogéneas, y que dicho límite sea el mismo en ambos casos. Lo que haremos ahora es estudiar más propiedades de la integral.

Las propiedades que veremos nos permitirán concluir la existencia de ciertas integrales de manera sencilla y, a la vez, nos permitirán manipular algebraicamente a las integrales. En caso de necesitar un recordatorio de la definición de integral, te recomendamos consultar la entrada anterior.

Integrabilidad de familias de funciones especiales

Hay algunas propiedades de funciones que se estudian desde Cálculo I que implican la integrabilidad. A continuación presentamos un par de ejemplos.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es acotada y monótona en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Supondremos que $f$ es estrictamente creciente. Otras variantes de monotonía (no decreciente, no creciente, estrictamente decreciente) tienen una demostración similar, que puedes hacer por tu cuenta.

Tomemos la partición homogénea $P_n$ del intervalo $[a,b]$. Definiendo $$x_j=a+j\frac{b-a}{n}$$ para $j=0,\ldots,n$, se tiene que las celdas son $$[x_0,x_1],[x_1,x_2],\ldots,[x_{n-1},x_n].$$

Las celdas tienen todas longitud $\frac{b-a}{n}$ y como la función es estrictamente creciente, el mínimo se alcanza al inicio de cada celda. De esta manera, la suma inferior para esta partición es:

\begin{align*}
\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right).
\end{align*}

Similarmente, el máximo se alcanza al final de cada celda. Por ello, la suma superior para esta partición es

\begin{align*}
\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right).
\end{align*}

Restando la suma inferior a la superior, obtenemos

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\left(\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right)\right)-\left(\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right)\right)\\
&=\frac{b-a}{n}(f(x_n)-f(x_0))\\
&=\frac{(b-a)(f(b)-f(a))}{n}.
\end{align*}

De acuerdo a la condición de Riemann (enunciada en la entrada anterior), la función será integrable si logramos que esta diferencia sea tan pequeña como queramos. Tomemos entonces cualquier $\epsilon>0$ y $n$ un entero tan grande como para que $n>\frac{1}{\epsilon}(b-a)(f(b)-f(a))$. Para este $n$, se cumple que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{(b-a)(f(b)-f(a))}{n}<\epsilon,
\end{align*}

y por ello la función es integrable.

$\square$

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Como primera observación, como $f$ es continua en el intervalo cerrado y acotado $[a,b]$, entonces es acotada, de modo que sí podemos hablar de sus sumas superiores e inferiores.

La estrategia que usaremos para ver que es integrable será verificar nuevamente la condición de Riemann, es decir, que para cualquier $\epsilon > 0$, existe una suma superior y una inferior cuya diferencia es menor que $\epsilon$. La intuición es que con una partición suficientemente fina, el máximo y mínimo de $f$ son muy cercanos porque los puntos que los alcanzan están en una celda muy chiquita (y entonces son muy cercanos). Para poder hacer esto «globalmente» en todas las celdas, necesitaremos una propiedad un poco más fuerte que continuidad: continuidad uniforme (puedes seguir el enlace para recordar este contenido aquí en el blog). Pero ésta se tiene pues las funciones continuas en intervalos cerrados y acotados son uniformemente continuas.

Tomemos entonces $\epsilon >0$. Como mencionamos, $f$ es uniformemente continua y el intervalo $[a,b]$ es cerrado y acotado, entonces $f$ es uniformememente continua. Así, existe una $\delta>0$ tal que si $|x-y|<\delta$, entonces $|f(x)-f(y)|<\frac{\epsilon}{b-a}$. Tomemos $n$ tan grande como para que $\frac{b-a}{n}<\delta$. Tras hacer esto, en cada celda $i$ de la partición homogénea $P_n$ los valores $m_i$ y $M_i$ donde $f$ alcanza el mínimo y máximo respectivamente cumplen que $|M_i-m_i|\leq \frac{b-a}{n}<\delta$ y por lo tanto para cada $i$ se tiene $f(M_i)-f(m_i)=|f(M_i)-f(m_i)|<\frac{\epsilon}{b-a}$.

Ya tenemos los ingredientes para realizar la cuenta de sumas superiores e inferiores.

Por un lado,

$$\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(M_1)+\ldots+f(M_n)\right).$$

Por otro,

$$\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(m_1)+\ldots+f(m_n)\right),$$

así que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{b-a}{n}\sum_{i=1}^n \left(f(M_i)-f(m_i)\right)\\
&<\frac{b-a}{n}\sum_{i=1}^n \frac{\epsilon}{b-a}\\
&=\frac{b-a}{n}\left(n\frac{\epsilon}{b-a}\right)\\
&=\epsilon.
\end{align*}

Esto muestra que podemos acercar una partición superior tanto como queramos a una inferior. Por el criterio de la entrada anterior, la función $f$ es integrable en $[a,b]$.

$\square$

Separación de la integral en intervalos

Enunciemos una propiedad importante de la integral: puede partirse en intervalos.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Demostración. Veamos primero que si la integral en todo $[a,b]$ existe, entonces las otras dos también. Trabajaremos usando la condición de Riemann. Sea $\epsilon>0$. Como $f$ es integrable en $[a,b]$, entonces existe una partición $P$ de $[a,b]$ tal que

$$\overline{S}(f,P)-\underline{S}(f,P)<\epsilon.$$

Podemos suponer que uno de los puntos de $P$ es el punto $c$, pues de no serlo, refinamos a $P$ incluyendo a $c$. Esto no aumenta la suma superior, ni disminuye la inferior, así que sigue cumpliendo la desigualdad anterior. Si $P=\{x_0,\ldots,x_n\}$, podemos entonces pensar que para alguna $k$ en $\{0\ldots,n\}$ se cumple que $x_k=c$, y entonces de esta partición de $[a,b]$ salen las particiones:

  • $P_1 = \{a=x_0, x_1, … , x_k=c\}$ de $[a,c]$ y
  • $P_2 = \{c={x_k}, x_{k+1}, … , x_n=b\}$ de $[c,b]$.

Como las celdas de $P$ son celdas de $P_1$ ó $P_2$, entonces las sumas superiores e inferiores cumplen:

\begin{align*}
\overline{S} (f,P_1) + \overline{S} (f,P_2) &= \overline{S} (f,P), \\
\underline{S} (f,P_1) + \underline{S} (f,P_2) &= \underline{S} (f,P) .\\
\end{align*}

Si se restan ambas sumas, se obtiene lo siguiente:

\begin{align*}
\left(\overline{S} (f,P_1) \ – \ \underline{S} (f,P_1)\right) + \left(\overline{S} (f,P_2) \ – \ \underline{S} (f,P_2)\right) = \overline{S} (f,P) \ – \ \underline{S} (f,P) < \epsilon.\\
\end{align*}

Ambos términos de la izquierda son positivos y su suma es menor que $\epsilon$, así que concluimos:

\begin{align*}
\overline{S} (f,P_1) \ – \ \underline{S} (f,P_1) &< \epsilon,\\
\overline{S} (f,P_2) \ – \ \underline{S} (f,P_2) &< \epsilon.\\
\end{align*}

De este modo, por el criterio de Riemann se tiene que $f$ es integrable en $[a,c]$ y en $[c,b]$.

Si la integrales en $[a,c]$ y $[c,b]$ existen, entonces puede hacerse una prueba similar: para cualquier $\epsilon$ habrá una partición $P$ de $[a,c]$ con diferencia de suma superior e inferior menor a $\epsilon/2$, y lo mismo para una partición $P’$ de $[c,b]$. Un argumento similar al de arriba ayudará a ver que $P\cup P’$ es una partición de $[a,b]$ que hace que la diferencia de la suma superior e inferior sea menor a $\epsilon$. Los detalles quedan para que los verifiques por tu cuenta.

Veamos ahora que cuando las integrales existen, entonces se cumple la igualdad

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Tomemos cualquier partición $P’$ de $[a,b]$. Tomemos el refinamiento $P=P’\cup \{c\}$ y escribamos $P=P_1\cup P_2$ como arriba. Usando que las integrales son ínfimos de sumas superiores (y por lo tanto son cotas inferiores), tenemos que:

\begin{align*}
\overline{S}(f,P’) & \geq \overline{S}(f,P)\\
&=\overline{S}(f,P_1) + \overline{S}(f,P_2)\\
&\geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.
\end{align*}

Por definición, $\int \limits_{a}^{b} f(x) \ dx$ es el ínfimo de las sumas superiores sobre todas las particiones $P’$ de $[a,b]$ y entonces es la mayor de las cotas inferiores. Como arriba tenemos que $\int_a^c f(x)\, dx + \int_c^b f(x) \,dx$ es cota inferior para todas estas sumas superiores, entonces:

$$\int_a^b f(x)\, dx \geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.$$

Así mismo, para cualesquiera particiones $P_1$ y $P_2$ de $[a,c]$ y $[c,b]$ respectivamente, tenemos que $P_1\cup P_2$ es partición de $[a,b]$ y entonces

$$\overline{S}(f,P_1) + \overline{S}(f,P_2) = \overline{S}(f,P_1\cup P_2) \geq \int_a^b f(x)\,dx,$$

de donde

$$\overline{S}(f,P_1) \geq \int_a^b f(x)\,dx \ – \ \overline{S}(f,P_2).$$

Así, para cualquier partición $P_2$ fija, hemos encontrado que $\int_a^b f(x)\,dx – \overline{S}(f,P_2)$ es cota inferior para todas las sumas superiores de particiones $P_1$ de $[a,c]$. De este modo, por ser la integral en $[a,c]$ la mayor de estas cotas inferiores, se tiene

$$\int_a^c f(x)\, dx \geq \int_a^b f(x)\,dx \ – \ \overline{S}(f,P_2)$$

para cualquier partición $P_2$ de $[c,b]$. Pero entonces

$$\overline{S}(f,P_2) \geq \int_a^b f(x)\,dx \ – \ \int_a^c f(x)\, dx, $$

se cumple para toda partición $P_2$ de $[b,c]$, de donde concluimos

$$\int_b^c f(x)\, dx \geq \int_a^b f(x)\,dx \ – \ \int_a^c f(x)\, dx.$$

Despejando, obtenemos la desigualdad

$$\int_a^b f(x)\, dx + \int_b^c f(x)\, dx \geq \int_a^b f(x).$$

Junto con la desigualdad que mostramos arriba, se obtiene la desigualdad deseada.

$\square$

Límites reales arbitrarios

Hasta ahora siempre hemos hablado de la existencia de la integral de una función en un intervalo $[a,b]$ con $a\leq b$. Cuando $a=b$, la integral que buscamos es en el intervalo $[a,a]$ y se puede mostrar que en este caso la integral siempre existe y es igual a cero, es decir, que $$\int_a^a f(x)\, dx = 0.$$

La siguiente definición nos dice qué hacer cuando en los límites de integración vamos de un número mayor a uno menor.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sean $a<b$ reales. Si la integral de $f$ en el intervalo $[a,b]$ existe, entonces definimos la integral de $f$ de $b$ a $a$ como sigue: $$\int_b^a f(x)\,dx= – \int_a^b f(x)\, dx.$$

Esta definición es compatible con todo lo que hemos platicado, y nos permite extender la identidad $$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$ de la proposición de la sección anterior a valores arbitrarios de $a,b,c$, sin importar en qué orden estén en la recta real (siempre y cuando las integrales existan, por supuesto). Por ejemplo, si $a>b>c$, entonces podemos proceder como sigue mediante lo que ya hemos demostrado y definido:

\begin{align*}
\int_a^b f(x)\, dx &= – \int_b^a f(x)\, dx \quad \text{Def. int. para $a>b$.}\\
&= – \left(\int_c^a f(x)\, dx \ – \ \int_c^b f(x)\, dx\right) \quad \text{Por prop. anterior pues $c<b<a$.}\\
&= – \int_c^a f(x)\, dx + \int_c^b f(x)\, dx \quad \text{Distribuir el $-$}\\
&= \int_a^c f(x)\, dx + \int_c^b f(x)\, dx \quad \text{Def. int. para $a>c$}.
\end{align*}

Aquí se ve como con un orden específico de $a,b,c$ se sigue cumpliendo la identidad buscada, aunque $c$ no quede entre $a$ y $b$ y no se cumpla que $a\leq b$. Siempre es posible hacer esto y te recomendamos pensar en cómo argumentar todos los casos posibles de $a,b,c$.

La intuición en áreas de que la integral $\int_b^a f(x)\, dx$ cambia de signo con respecto a $\int_a^b f(x)\, dx$ es que en una recorremos el área de izquierda a derecha y en la otra de derecha a izquierda. Entonces, «recorremos el área al revés» porque «graficamos hacia atrás». Por ejemplo, se tiene el intervalo $[5,1]$, la forma en que se recorrerá al momento de graficar sería del $5$ al $1$ y, si la función es positiva, la integral será negativa.

Linealidad de la integral

Tomemos dos funciones acotadas $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ y supongamos que son integrables en el intervalo $[a,b]$. Tomemos cualquier real arbitrario $\alpha$. A partir de esto, podemos construir la función $f+\alpha g$, que recordemos que su definición es que es una función de $[a,b]$ a $\mathbb{R}$ con regla de asignación $$(f+\alpha g)(x) = f(x) + \alpha g(x).$$

Si tomamos una partición $P$ de $[a,b]$, se puede verificar fácilmente que

\begin{align*}
\overline{S}(f+\alpha g, P)&=\overline{S}(f,P)+\alpha \overline{S}(g,P),\\
\underline{S}(f+\alpha g, P)&=\underline{S}(f,P)+\alpha \underline{S}(g,P).
\end{align*}

Restando ambas expresiones,

$$\overline{S}(f+\alpha g, P) \ – \ \underline {S}(f+\alpha g, P) = \left(\overline{S}(f,P) \ – \ \underline{S}(f,P)\right) + \alpha \left(\overline{S}(g,P) \ – \ \underline{S}(g,P)\right).$$

Intuitivamente (respaldados por el criterio de Riemann), el lado derecho puede ser tan pequeño como queramos pues $f$ y $g$ son integrables. Así que el lado izquierdo también. Esto muestra que $f+\alpha g$ también es integrable en $[a,b]$. Te recomendamos hacer una demostración formal.

Además, si $P_n$ es una sucesión de particiones en donde los tamaños de celda convergen a cero (y por lo tanto para las cuales las sumas superiores convergen a la integral para cada función de arriba), entonces:

\begin{align*}
\int_a^b (f+\alpha g)(x)\, dx &= \lim_{n\to \infty} \overline{S} (f+\alpha g, P_n)\\
&=\lim_{n\to \infty} \left(\overline{S}(f,P_n)+ \alpha\overline{S}(g,P_n)\right)\\
&=\lim_{n\to \infty} \overline{S}(f,P_n) + \alpha \lim_{n\to \infty} \overline{S}(g,P_n)\\
&=\int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.
\end{align*}

En resumen, hemos demostrado lo siguiente:

Teorema. La integral es lineal. Es decir, si $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son funciones acotadas e integrables en $[a,b]$, entonces para cualquier real $\alpha$ también $f+\alpha g$ es integrable en $[a,b]$ y además se cumple $$\int_a^b (f+\alpha g)(x)\, dx = \int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.$$

Dos casos particulares de interés son los siguientes:

  • Si en el teorema anterior tomamos $\alpha=1$, entonces obtenemos que $\int_a^b (f+g)(x)=\int_a^b f(x)\, dx + \int_a^b g(x)\, dx$, es decir, la integral abre sumas.
  • Si en el teorema anterior tomamos $f$ como la función constante cero, entonces obtenemos que $\int_a^b \alpha g(x)\, dx = \alpha \int_a^b g(x)\, dx$, es decir la integral saca escalares.

La integral respeta desigualdades

Veamos que la integral, en cierto sentido, respeta desigualdades. Un primer paso que es muy sencillo de verificar es lo que sucede con la integral de funciones no negativas.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es una función integrable en el intervalo $[a,b]$ y se cumple $f(x)\geq 0$ para todo $x\in [a,b]$, entonces $$\int_a^b f(x)\, dx \geq 0.$$

Demostración. Como $f(x)\geq 0$, entonces claramente para cualquier partición $P$ se cumple que $\overline{S}(f,P)\geq 0$, pues aparecen puros términos positivos en la suma superior. Así, $0$ es una cota inferior para las sumas superiores. Como la integral es la máxima de dichas cotas superiores, entonces $$\int_a^b f(x)\, dx \geq 0,$$ como queríamos.

$\square$

De este resultado y las propiedades que hemos mostrado, podemos deducir algo mucho más general.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones integrables en un intervalo $[a,b]$, dentro del cual también se cumple que $f(x)\leq g(x)$. Entonces, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx.$$

Demostración. Como $f$ y $g$ son integrables en $[a,b]$, entonces la combinación lineal $g-f$ también lo es, y además $(g-f)(x)=g(x)-f(x)\geq 0$. Por la proposición anterior y la linealidad de la integral, tenemos entonces que: $$\int_a^b g(x)\, dx \ – \ \int_a^b f(x)\, dx = \int_a^b (g-f)(x)\, dx \geq 0.$$

De aquí, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx,$$ como queríamos.

$\square$

Más adelante…

Todas las propiedades que hemos enunciado se utilizarán de aquí en adelante. Es importante que las tengas presentes. Son propiedades que nos permiten factorizar funciones para que al momento de integrar o que nos permiten partir una integral complicada en otras más sencillas con integración inmediata o ya conocida.

En la siguiente entrada enunciaremos y demostraremos el teorema del valor medio para la integral. Es un teorema muy relevante, pues será uno de los ingredientes en la demostración de otros teoremas importantes para el cálculo integral.

Tarea moral

  1. Utilizando las propiedades anteriores, resuelve las siguientes integrales.
    • $\int \limits_0^1 7(4+3x^2) ~dx.$
    • $\int \limits_2^0 \frac{1}{4}(32x-3x^2+6) ~dx.$
  2. Termina con detalle todas las demostraciones de la entrada que hayan quedado pendientes.
  3. Usndo las propiedades de esta entrada, demuestra que la integral $\int_{-10}^{10} x^7-x^5+3x^3+27x\, dx$ existe y determina su valor. Sugerencia. Muestra que la función dentro de la integral es continua y cumple $f(x)=-f(x)$. Usa varias de las propiedades de esta entrada.
  4. Demuestra la siguiente igualdad:
    $$ \int \limits_{a}^{b} \alpha \ f(x) \ dx \ + \int \limits_{a}^{b} \beta\ g(x) \ dx \ = \ \int \limits_{a}^{b} \alpha f(x) \ + \beta g(x) \ dx .$$
  5. Sean $a\leq b\leq c\leq d$ números reales. Sea $f:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,d]$. Demuestra que todas las integrales $$\int_a^c f(x)\, dx, \int_b^d f(x)\, dx, \int_a^d f(x)\,dx, \int_b^c f(x)\,dx$$
    existen y muestra que satisfacen la siguiente identidad:
    $$\int_a^c f(x)\, dx + \int_b^d f(x)\, dx = \int_a^d f(x)\,dx + \int_b^c f(x)\,dx.$$
  6. Sean $a<b$ reales. Demuestra que si la función $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, se cumple que $f(x)\geq 0$ para $x\in [a,b]$ y además existe por lo menos un punto $c$ tal que $f(c)>0$, entonces $\int_a^b f(x)\, dx >0$. Como sugerencia, demuestra que existe todo un intervalo (aunque sea muy chiquito) donde la función es positiva, y usa otras propiedades que hemos mostrado. Luego, encuentra un contraejemplo para esta afirmación en donde $f$ no sea continua.

Entradas relacionadas

Inversas de matrices de 2×2 con reducción gaussiana

Por Leonardo Ignacio Martínez Sandoval

Introducción

Es posible que sepas que una matriz $$A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$$de $2\times 2$ es invertible si y sólo si $ad-bc=0$, y que en ese caso la inversa está dada por $$B=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$ De hecho, una vez que se propone a $B$ como esta matriz, es sencillo hacer la multiplicación de matrices y verificar que en efecto tanto $AB$ como $BA$ son la matriz identidad de $2\times 2$.

Sin embargo, la idea de esta entrada es deducir que $ad-bc$ tiene que ser distinto de $0$ para que $A$ sea invertible y que, en ese caso, la inversa tiene que ser de la forma que dijimos. En esta deducción no usaremos nunca la definición ni propiedades de determinantes.

El procedimiento

Lo que haremos es aplicar el procedimiento de reducción gaussiana para encontrar inversas, es decir, le haremos reducción gaussiana a la matriz $A’=\begin{pmatrix}
a & b & 1 & 0\\
c & d & 0 & 1
\end{pmatrix}$ obtenida de «pegar» a la matriz $A$ una matriz identidad a su derecha. Es un resultado conocido que si $A$ es invertible, entonces al terminar la reducción gaussiana de $A’$ la matriz de $2\times 2$ que queda a la izquierda será la identidad y la que quede a la derecha será la inversa de $A$.

Empecemos con una matriz $A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ de $2\times 2$ cualquiera. Si ambos $a$ y $c$ son iguales a $0$, entonces la primer columna de $BA$ es $0$ para toda $B$, y por lo tanto $A$ no puede tener inversa. Así, una primera condición para que $A$ tenga inversa es que $a$ o $c$ sean distintos de cero. Si $a$ fuera $0$, el primer paso de reducción gaussiana sería intercambiar las filas, así que podemos suponer sin pérdida de generalidad que $a$ no es $0$. De este modo, el primer paso de reducción gaussiana es multiplicar la primer fila por $1/a$ para que el pivote sea $1$: $$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
c & d & 0 & 1
\end{pmatrix}$$

El siguiente paso es hacer al resto de las entradas en la columna de ese primer pivote iguales a $0$. Para eso basta restar a la segunda fila $c$ veces la primera:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & d – \frac{bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}=\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & \frac{ad-bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}.$$

Si $ad-bc=0$, entonces el pivote de la segunda fila ya no quedaría en la segunda columna, y la forma escalonada reducida no tendría a la identidad a la izquierda. Así que una segunda condición para que $A$ sea invertible es que $ad-bc$ no sea cero. Notemos que si $ad-bc$ no es cero, entonces tampoco $a$ y $c$ son simultaneamente $0$, así que nuestra condición anterior ya está capturada con pedir que $ad-bc$ no sea cero.

Sabiendo que $ad-bc$ no es cero, el siguiente paso en la reducción gaussiana es multiplicar la segunda fila por $a/(ad-bc)$ para hacer el pivote igual a $1$:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Finalmente, para que el pivote de la segunda columna sea la única entrada no cero, tenemos que restar a la primera fila la segunda multiplicada por $-b/a$:

$$\begin{pmatrix}
1 & 0 & \frac{1}{a}+\frac{bc}{a(ad-bc)} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\begin{pmatrix}
1 & 0 & \frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Así, basta pedir $ad-bc$ para que la reducción gaussiana deje a la identidad en la matriz de $2\times 2$ de la izquierda y, al terminar el procedimiento, tenemos a la derecha a la inversa de $A$ que es la matriz:

$$\begin{pmatrix}
\frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
-\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$

Esto es a lo que queríamos llegar. Por supuesto, el camino fue largo y hay formas de llegar al mismo resultado de manera más corta, pero usando más teoría.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Álgebra Lineal II: Polinomio característico

Por Julio Sampietro

Introducción

En el transcurso de esta unidad hemos construido varios de los objetos algebraicos que nos interesan. En primer lugar, dejamos claro qué quería decir evaluar un polinomio en una matriz o transformación lineal. Esto nos llevó a preguntarnos por aquellos polinomios que anulan a una matriz o transformación lineal. De manera natural, descubrimos que aquellos polinomios que anulan son múltiplos de un polinomio especial asociado a la matriz o transformación lineal llamado polinomio mínimo.

De manera un poco separada, comenzamos a estudiar los eigenvalores, eigenvectores y eigenespacios de una transformación lineal y en la entrada anterior nos enfocamos en varias de sus propiedades principales. Uno de los resultados clave que encontramos es que los eigenvalores de una matriz o transformación lineal son las raíces del polinomio mínimo que estén en el campo en el que estemos trabajando.

Aunque este resultado sea interesante de manera teórica, en la práctica debemos hacer algo diferente pues no es tan sencillo encontrar el polinomio mínimo de una matriz o transformación lineal. Es por esto que ahora estudiaremos con profundidad otro objeto que resultará fundamental en nuestro estudio: el polinomio característico. Ya nos encontramos con él anteriormente. Si $A$ es una matriz en $M_n(F)$, dicho polinomio en la variable $\lambda$ es el determinante $\det(\lambda I_n-A)$.

Esta entrada es más bien una introducción, así que nos enfocaremos en probar las cosas más básicas de este objeto. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

Definición de polinomio característico

Comencemos con una matriz $A\in M_n(F)$. Vimos que encontrar los eigenvalores de $A$ se reduce a encontrar las soluciones de la ecuación

\begin{align*}
\det(\lambda I_n-A)=0
\end{align*}

en $F$. Vamos a estudiar más a detalle la expresión de la izquierda.

El siguiente teorema va un poco más allá y de hecho estudia expresiones un poco más generales.

Teorema. Sean $A,B\in M_n(F)$ dos matrices. Existe un polinomio $P\in F[X]$ tal que para todo $x\in F$ se cumple

\begin{align*}
P(x)=\det(xA+B).
\end{align*}

Si denotamos a este polinomio por $P(X)=\det(XA+B)$, entonces

\begin{align*}
\det(XA+B)=\det(A)X^{n}+\alpha_{n-1}X^{n-1}+\dots+\alpha_1 X+\det B
\end{align*}

para algunas expresiones polinomiales $\alpha_1,\dots, \alpha_{n-1}$ con coeficientes enteros en las entradas de $A$ y $B$.

Demostración. Consideremos el siguiente polinomio en la variable $X$ y coeficientes en $F$, es decir, el siguiente polinomio en $F[X]$:

\begin{align*}
P(X)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(a_{1\sigma(1)} X+b_{1\sigma(1)}\right)\cdots \left(a_{n\sigma(n)}X+b_{n\sigma(n)}\right).
\end{align*}

Por construcción, $P$ es un polinomio cuyos coeficientes son expresiones polinomiales enteras en las entradas de $A$ y $B$. Más aún, se cumple que $P(x)=\det(xA+B)$ para $x\in F$ (podría ser útil revisar la entrada sobre determinantes para convencerte de ello). El término constante lo obtenemos al evaluar en $X=0$, pero eso no es más que $P(0)=\det(0\cdot A+B)=\det(B)$. Finalmente para cada $\sigma\in S_n$ tenemos que el primer término de cada sumando es

\begin{align*}
\operatorname{sign}(\sigma)(a_{1\sigma(1)}X+b_{1\sigma(1)})\cdots (a_{n\sigma(n)} X+b_{n\sigma(n)})
\end{align*}

Notemos que la única manera de obtener un término $X^n$ en esta expresión es cuando en cada binomio que se está multiplicando se usa el término $X$. Así, el coeficiente de $X^n$ es $\operatorname{sign}(\sigma) a_{1\sigma(1)}\cdots a_{n\sigma(n)}X^{n}$.

Agrupando todos los sumandos para todas las $\sigma$ y comparando con la definición del determinante llegamos a que $$P(X)=\det(A)X^{n}+\ldots,$$ es decir el término de orden $n$ es en efecto $\det(A)$.

$\square$

Del teorema se sigue que si $A$ y $B$ tienen entradas enteras o racionales, $\det(XA+B)$ tiene coeficientes enteros o racionales respectivamente.

Enseguida podemos definir (gracias al teorema) el siguiente objeto:

Definición. El polinomio característico de la matriz $A\in M_n(F)$ es el polinomio $\chi_A\in F[X]$ definido por

\begin{align*}
\chi_A(X)=\det(X\cdot I_n-A).
\end{align*}

Una observación inmediata es que, de acuerdo al teorema, el coeficiente principal de $\chi_A(X)$ tiene coeficiente $\det(I_n)=1$. En otras palabras, acabamos de demostrar la siguiente propiedad fundamental del polinomio característico.

Proposición. El polinomio característico de una matriz en $M_n(F)$ siempre tiene grado exactamente $n$ y además es un polinomio mónico, es decir, que el coeficiente que acompaña al término de grado $n$ es igual a $1$.

Veamos un ejemplo sencillo.

Ejemplo. Si queremos calcular el polinomio característico de

\begin{align*}
A=\begin{pmatrix} 1 & -1\\ 1 &0\end{pmatrix}\in M_2(\mathbb{R})
\end{align*}

entonces usamos la definición

\begin{align*}
\chi_A(X)&=\det(X\cdot I_2-A)\\&=\begin{vmatrix} X-1 & 1\\ -1 & X\end{vmatrix}\\&= X(X-1)+1.
\end{align*}

Y así los eigenvalores de $A$ son las raíces reales de $\chi_A(X)$. Es decir, tenemos que resolver

\begin{align*} 0=x(x-1)+1=x^2-x+1.\end{align*}

Sin embargo, el discriminante de esta ecuación cuadrática es $(-1)^2-4(1)(1)=-3$, el cual es un real negativo, por lo que no tenemos eigenvalores reales. Si estuviéramos trabajando en $\mathbb{C}$ tendríamos dos eigenvalores complejos:

\begin{align*}
x_{1,2}= \frac{1\pm i\sqrt{3}}{2}.
\end{align*}

De aquí, ¿cómo encontramos los eigenvectores y eigenespacios? Basta con resolver los sistemas lineales homogéneos de ecuaciones $(A-x_1I_2)X=0$ para encontrar el $x_1$-eigenespacio y $(A-x_2)X=0$ para encontrar el $x_2$-eigenespacio.

$\triangle$

Algunos cálculos de polinomios característicos

Ya que calcular polinomios característicos se reduce a calcular determinantes, te recomendamos fuertemente que recuerdes las propiedades que tienen los determinantes. Sobre todo, aquellas que permiten calcularlos.

¡A calcular polinomios característicos!

Problema 1. Encuentra el polinomio característico y los eigenvalores de $A$ dónde $A$ es

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0 & 0\\
2 & 0 & -1 & 0\\
0 & 7 & 0 &6\\
0 & 0 & 3 & 0
\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. Usamos la expansión de Laplace respecto al primer renglón:

\begin{align*}
\chi_A(X)&=\det(XI_4-A)\\&= \begin{vmatrix}
X & -1 & 0 & 0\\
-2 & X & 1 & 0\\
0 & -7 & X & -6\\
0 & 0 & -3 & X\end{vmatrix}\\
&= X\begin{vmatrix} X & 1 & 0\\ -7 & X & -6\\ 0 & -3 & X\end{vmatrix}+ \begin{vmatrix}
-2 & 1 & 0\\ 0 & X& -6\\ 0 &-3 & X\end{vmatrix}\\
&= X(X^3-11X)-2(X^2-18)\\
&= X^4-13X^2+36.
\end{align*}

Después, para encontrar los eigenvalores de $A$ tenemos que encontrar las raíces reales de la ecuación

\begin{align*}
x^4-13x^2+36=0.
\end{align*}

Sin embargo, no hay que desalentarse por ver una ecuación de grado $4$. Si hacemos el cambio $y=x^2$ podemos llevar nuestro problema a resolver

\begin{align*}
y^2-13y+36=0.
\end{align*}

¡Es una ecuación de segundo orden! Esta la podemos resolver usando ‘la chicharronera’ y obtenemos como soluciones $y_1=4$ y $y_2=9$. Pero todavía tenemos que resolver $x^2=y_1$ y $x^2=y_2$. Al resolver estas últimas dos ecuaciones obtenemos que $x=\pm 2,\pm 3$ son los eigenvalores de $A$.

$\triangle$

Problema 2. Calcula el polinomio característico y los eigenvalores de la matriz

\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 &1 \end{pmatrix}\in M_3(F_2).
\end{align*}

Solución. Nota que estamos trabajando en el campo de dos elementos $F_2$, por lo que $-1=1$. Usando la definición:

\begin{align*}
\chi_A(X)&=\det(XI_3-A)\\&= \begin{vmatrix} X-1 & 0 & -1\\ -1 & X-1 & 0\\ -1 & 0 &X-1\end{vmatrix}\\
&= \begin{vmatrix} X+1 & 0 & 1\\ 1 & X+1& 0 \\ 1 & 0 &X+1\end{vmatrix}.
\end{align*}

Aquí estamos usando repetidamente $-1=1$. Usamos otra vez la expansión de Laplace en el primer renglón para llegar a

\begin{align*}
\chi_A(X)&= (X+1)\begin{vmatrix} X+1 & 0 \\ 0 & X+1\end{vmatrix}+\begin{vmatrix} 1 & X+1\\ 1 & 0\end{vmatrix}\\
&= (X+1)^3-(X+1).
\end{align*}

Luego, si queremos encontrar los eigenvalores de $A$ tenemos que resolver

\begin{align*}
(x+1)^3-(x+1)=0.
\end{align*}

Si bien existen varias maneras de resolver la ecuación, podemos simplemente sustituir los únicos valores posibles de $x$ : $0$ o $1$. Sustituyendo es fácil ver que ambos satisfacen la ecuación, por lo que los eigenvalores de $A$ son $0$ y $1$.

$\triangle$

Más adelante…

En la próxima entrada calcularemos el polinomio característico de una variedad de matrices importantes: triangulares superiores, nilpotentes, etc. Esto nos permitirá entender mejor al polinomio característico y lidiar con muchos casos para facilitarnos los cálculos más adelante.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que $0$ es un eigenvalor de una matriz $A$ si y sólo si $\det(A)=0$.
  • ¿Una matriz compleja de tamaño $n$ tiene necesariamente $n$ eigenvalores distintos?
  • Calcular el polinomio característico y los eigenvalores de
    \begin{align*}A=\begin{pmatrix} 1 & 2 & 0\\ 0 & 1 &2\\ 2 & 0 & 1\end{pmatrix}\in M_3(F_3).
    \end{align*}
  • Usando la fórmula del determinante para matrices de tamaño $2$, encuentra un criterio simple para saber si una matriz con entradas reales de tamaño $2$ tiene dos, uno o ningún eigenvalor real.
  • Da un criterio simple para saber si una matriz de tamaño $2$ con entradas complejas tiene eigenvalores puramente imaginarios.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Aplicar polinomios a transformaciones lineales y matrices

Por Julio Sampietro

Introducción

Varios de los resultados fundamentales de Álgebra Lineal se obtienen al combinar las idea de transformaciones lineales con la de polinomios. El objetivo de esta entrada es introducir el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad. Si bien esta idea es simple, más adelante veremos aplicaciones importantes y con un gran alcance. Uno de los resultados cruciales que surge de esta idea es el conocido teorema de Cayley-Hamilton.

Primeras construcciones

Sea $V$ un espacio vectorial sobre un campo $F$, y sea $T:V\to V$ una transformación lineal. Definimos a la transformación $T^n:V\to V$ para cualquier $n\in \mathbb{N}$ inductivamente a través de

\begin{align*}
T^0=\operatorname{Id}, \hspace{5mm} T^{i+1}= T\circ T^{i},
\end{align*}

donde, recordamos, $\operatorname{Id}$ es la transformación identidad. Intuitivamente, $T^n$ es la «$n$-ésima composición» de $T$. Por ejemplo, $T^3(v)$ no es más que $T(T(T(v)))$ y $T^0(v)$ es simplemente «no usar $T$ para nada», es decir, $\operatorname{Id}(v)=v$. Al componer iteradamente $T$, sigue siendo una transformación lineal de $V$ a $V$, así que $T^n$ es transformación lineal de $V$ a $V$ para todo entero $n\geq 0$.

Ya que hablamos de «potencias» de una transformación lineal, podemos rápidamente hacer sentido de un «polinomio evaluado en una transformación lineal». Si $$P(X)=a_0+a_1X+a_2X^2+\dots + a_n X^n\in F[X]$$ es un polinomio, definimos $P(T):V\to V$ como

\begin{align*}
P(T):= a_0 T^{0}+ a_1 T^1+ a_2 T^2+\dots +a_n T^n.
\end{align*}

Como las transformaciones lineales de $V$ a $V$ son cerradas bajo combinaciones lineales, entonces $P(T)$ también es una transformación lineal de $V$ a $V$.

Ejemplo. Tomemos a la transformación $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=(2x-2y,x+y)$. Tomemos al polinomio $P(x)=x^3-2x+4$. ¿Quién es la transformación $P(T)$? Calculemos primero las «potencias» de $T$:

\begin{align*}
T^0(x,y)&=(x,y)\\
T^1(x,y)&=T(x,y)\\
&=(2x-2y,x+y)\\
T^2(x,y)&=T(T(x,y))\\
&=T(2x-2y,x+y)\\
&=(2(2x-2y)-2(x+y),(2x-2y)+(x+y))\\
&=(2x-6y,3x-y)\\
T^3(x,y)&=T(2x-6y,3x-y)\\
&=(-2x-10y,5x-7y).
\end{align*}

Ahora sí, ya podemos saber qué hace $P(T)$. Tenemos:

\begin{align*}
P(T)(x,y)&=(T^3-2T+4\text{Id})(x,y)\\
&=(-2x-10y,5x-7y)-2(2x-2y,x+y)+4(x,y)\\
&=(-2x-6y,3x-5y).
\end{align*}

$\triangle$

Sumas y productos de polinomios

Las operaciones suma y producto de polinomios se traducen, respectivamente, a suma y composición de las evaluaciones en transformaciones lineales. Esta es una linda propiedad que podemos hacer precisa gracias a la siguiente proposición.

Proposición. Si $P_1, P_2\in F[X]$ son dos polinomios y $T:V\to V$ es una transformación lineal, entonces

  1. $ (P_1+P_2)(T)=P_1(T)+P_2(T)$,
  2. $(P_1P_2)(T)=P_1(T)\circ P_2(T)$.

Te invitamos a demostrar esta proposición. Advertimos que, sin embargo, no se cumplen identidades como $$P(T_1+T_2)=P(T_1)+P(T_2)$$ o bien $$P(T_1\circ T_2)=P(T_1)\circ P(T_2).$$ Un contraejemplo para la primera identidad podría ser tomar$P(X)=X^2$ y $T_1=T_2=\operatorname{Id}$. En este caso

\begin{align*}
P(T_1+T_2)&=(T_1+T_2)^2\\&= 4\operatorname{Id}\\&\neq 2\operatorname{Id}\\&=P(T_1)+P(T_2).
\end{align*}

Dejamos como ejercicio el verificar que la segunda identidad tampoco es cierta en general. Fijando $T$, podemos juntar a todas las transformaciones de la forma $P(T)$ para algún $P$ en la siguiente estructura.

Definición. La $F$-álgebra generada por la transformación $T$ es el conjunto

\begin{align*}
F[T]=\lbrace P(T)\mid P\in F[X]\rbrace.
\end{align*}

Una consecuencia de la proposición anterior (es más, ¡una mera traducción!) es la siguiente.

Proposición. Para cualesquiera $x,y\in F[T]$ y $c\in F$ se cumple que $x+cy\in F[T]$ y $x\circ y\in F[T].$ Es decir, $F[T]$ es un subespacio del espacio de todas las transformaciones lineales de $V$ en $V$ que además es estable bajo composición.

También puedes verificar que $F[T]$ es el subespacio más chico (en el sentido de contención) del espacio de transformaciones lineales en $V$ que contiene a $T$, a $\operatorname{Id}$ y que es cerrado bajo composiciones.

Lo mismo pero con matrices

Desde Álgebra Lineal I sabemos que una transformación lineal se corresponde de manera biunívoca (fijando una base) con una matriz. Nuestra discusión previa se puede adaptar a este vocabulario, y eso es lo que haremos ahora.

Si $A\in M_n(F)$ es una matriz cuadrada de orden $n$ con coeficientes en $F$, podemos entender a $A^n$ simplemente como el $n$-ésimo producto de $A$ consigo misma. Luego si $$P(X)=a_0+a_1X+a_2 X^2+\dots +a_n X^n\in F[X]$$ es un polinomio, definimos

\begin{align*}
P(A):= a_0 I_n +a_1 A+ a_2 A^2+\dots+ a_n A^n.
\end{align*}

Se cumple que $(PQ)(A)=P(A)\cdot Q(A)$ para cualesquiera polinomios $P,Q$ y cualquier matriz $A$. Similarmente el álgebra generada por $A$ se define como

\begin{align*}
F[A]=\lbrace P(A)\mid P\in F[X]\rbrace,
\end{align*}

y es un subespacio de $M_n(F)$ que es cerrado bajo producto de matrices.

Ejemplo. Consideremos la matriz $A=\begin{pmatrix}2&-2\\1&1\end{pmatrix}$. Consideremos el polinomio $P(x)=x^3-2x+4$. ¿Quién es la matriz $P(A)$? Usando la definición, primero nos enfocaremos en encontrar las potencias de $A$. Puedes verificar por tu cuenta que:

\begin{align*}
A^0&=\begin{pmatrix}1&0\\0&1\end{pmatrix}\\
A^1&=\begin{pmatrix}2&-2\\1&1\end{pmatrix}\\
A^2&=\begin{pmatrix}2&-6\\3&-1\end{pmatrix}\\
A^3&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix}
\end{align*}

De esta manera,

\begin{align*}
P(A)&=A^3-2A+4I_2\\
&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix} – 2 \begin{pmatrix}2&-2\\1&1\end{pmatrix} + 4 \begin{pmatrix}1&0\\0&1\end{pmatrix}\\
&=\begin{pmatrix}-2&-6 \\ 3 & -5 \end{pmatrix}.
\end{align*}

$\triangle$

Este ejemplo se parece mucho al ejemplo que hicimos cuando evaluamos un polinomio en una transformación $T$. Esto no es casualidad, y se puede resumir en la siguiente observación.

Observación. Si $A$ es la matriz asociada a $T$ en alguna base, entonces $P(A)$ es la matriz asociada a $P(T)$ en dicha base.

Unos problemas para calentar

A continuación veremos algunos unos cuantos problemas resueltos para que te familiarices con los conceptos que acabamos de ver de manera un poco más teórica.

Problema 1.

  1. Si $A,B\in M_n(F)$ son matrices con $B$ invertible, demuestra que para cualquier $P\in F[X]$ se cumple
    \begin{align*}
    P(BAB^{-1})=BP(A)B^{-1}.
    \end{align*}
  2. Demuestra que si $A,B\in M_n(F)$ son similares, entonces $P(A)$ y $P(B)$ son similares para cualquier $P\in F[X]$.

Solución.

  1. Primero supongamos que $P(X)=X^k$ para alguna $k\geq 1$. Necesitamos demostrar que $\left(BAB^{-1}\right)^{k}= BA^{k}B^{-1}$, y esto lo podemos verificar sencillamente pues
    \begin{align*}
    (BAB^{-1})\cdot (BAB^{-1})\cdots (BAB^{-1})&= BA(B^{-1} B) A \cdots (B^{-1}B)AB^{-1}\\
    &= BA^{k}B^{-1},
    \end{align*}
    donde usamos que $BB^{-1}=I_n$. Más generalmente, si $P(X)=a_0+a_1 X+a_2X^2+\dots +a_n X^n$ entonces
    \begin{align*}
    P(BAB^{-1})&= \sum_{i=0}^{n} a_i (BAB^{-1})^{i}\\
    &= \sum_{i=0}^{n}a_i BA^{i}B^{-1}\\
    &= B\left(\sum_{i=0}^{n} a_i A^{i}\right)B^{-1}\\
    &= BP(A)B^{-1}
    \end{align*}
    que es lo que queríamos demostrar.
  2. Como $A$ y $B$ son similares, existe $C$ invertible tal que $A=CBC^{-1}$. Por el inciso anterior tenemos
    \begin{align*}
    P(A)=P(CBC^{-1})=CP(B)C^{-1}.
    \end{align*}
    Así, $P(A)$ y $P(B)$ son similares.

$\square$

Problema 2. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix}
\end{align*}

así como el polinomio $P(X)=X^2+2X-1$. Calcula $P(A)$.

Solución. Es cuestión de hacer los cálculos. Vemos que

\begin{align*}
A^2= \begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix}
\end{align*}

y así

\begin{align*}
P(A)&=A^2+2A-I_3\\&=\begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix} + 2\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix}
-3 & 2 & -3\\
-4 & -3 & 20\\
0 & 0 & 23
\end{pmatrix}.
\end{align*}

$\triangle$

Problema 3. Si $A$ es simétrica, demuestra que $P(A)$ es simétrica para cualquier polinomio $P$.

Solución. La demostración se basa en los siguientes hechos:

  1. Si $A=(a_{ij})$ y $B=(b_{ij})$ son matrices simétricas y $c\in F$ es un escalar, entonces $A+cB$ es simétrica, puesto que
    \begin{align*}
    (A+cB)_{ij}= a_{ij}+cb_{ij}= a_{ji}+cb_{ji}= (A+cB)_{ji}.
    \end{align*}
  2. Si $A,B$ son simétricas, su producto es una matriz simétrica. De nuevo, basta con hacer el cálculo
    \begin{align*}
    (AB)_{ij}=\sum_{k=1}^{n} a_{ik}b_{kj}=\sum_{k=1}^{n} b_{jk}a_{ki}= (AB)_{ji} .
    \end{align*}
  3. Usando el inciso anterior, se sigue que si $A$ es simétrica, entonces $A^{k}$ es simétrica para toda $k\geq 1$. Además, $I_n$ es simétrica y por el primer punto tenemos que toda combinación lineal de matrices simétricas es simétrica. En particular $P(A)$ es simétrica.

$\square$

Problema 4. Sea $V$ el espacio vectorial de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ infinitamente diferenciables. Sea $T:V\to V$ dada por $T:f\mapsto f’$. ¿Puedes encontrar un polinomio $P\in \mathbb{R}(X)$ distinto de cero tal que $P(T)=0$?

Solución. No es posible encontrar dicho polinomio. Suponiendo que sí, tendríamos que $P(T)$ es una ecuación diferencial polinomial de orden $n$, es decir, a cada función la evaluamos en una combinación

\begin{align*}
a_0f+a_1f’+a_2f»+\dots + a_n f^{n}
\end{align*}

donde $f^n$ es la $n$-ésima derivada. Si $P(T)$ es idénticamente cero, tenemos que toda función suave $f$ satisface esta ecuación. En particular tenemos que la constante $g(x)=1$ la satisface. Así $g’=g»=\dots=g^{n}=0$ y entonces

\begin{align*}
P(T)(g)= a_0 g+a_1g+\dots +a_ng^{n}=a_0=0.
\end{align*}

Concluimos que $a_0=0$. Luego, si consideramos a la función identidad $h(x)=x$ entonces también se tiene que cumplir la ecuación (recordamos que ya eliminamos el término $a_0$). Así

\begin{align*}
P(T)(h)= a_1h’+a_2h»+\dots +a_nh^{n}= a_1=0,
\end{align*}

donde usamos que $h'(x)=1$ y todas las derivadas de orden superior son cero. Continuando con este proceso (evaluando en $x^2,x^3,\ldots$) llegamos a que todos los coeficientes $a_i$ son cero. Esto quiere decir que el polinomio era nulo en primer lugar.

$\triangle$

Más adelante…

En entradas subsecuentes estudiaremos polinomios de matrices con propiedades especiales, como por ejemplo el polinomio mínimo, que se distinguen por sus deseables propiedades algebraicas. Este es el primer paso hacia el teorema de Cayley-Hamilton.

Tarea moral

Aquí hay unos ejercicios para que practiques lo visto en esta entrada.

  1. Compara el ejemplo que se dio de evaluar un polinomio en una transformación $T$ con el de evaluar un polinomio en una matriz $A$. ¿Por qué se parecen tanto?
  2. Considera $V$ el espacio vectorial de funciones $C^\infty$ en el intervalo $[0,2\pi]$ y $D:V\to V$ a la transformación que manda una función a su derivada, es decir $D(f)=f’$. Encuentra un polinomio $P$ tal que $P(D)(\sin(x)+\cos(x))$ sea la función cero.
  3. Demuestra que si $A$ es una matriz diagonal, $P(A)$ también es diagonal.
  4. Si
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2\\
    0 &-1\end{pmatrix}
    \end{align*}
    y $P(X)=X^3-X^2+X-1$, calcula $P(A)$.
  5. Generaliza el último problema de la entrada como sigue: Si $V$ es un espacio vectorial y $T:V\to V$ es tal que existen elementos $v_i$ con $i\in \mathbb{N}$ que cumplen $T^{i}(v_i)\neq 0$ y $T^{j}(v_i)=0$ para $j>i$, entonces no existe $P$ no nulo tal que $P(T)$ sea cero.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Problemas de espacios, subespacios y sumas directas

Por Julio Sampietro

Introducción

En esta entrada resolvemos más problemas para reforzar y aclarar los conceptos vistos anteriormente. Específicamente, resolvemos problemas acerca de espacios vectoriales, subespacios vectoriales y sumas directas.

Problemas resueltos

Problema 1. Muestra que el conjunto de las funciones continuas $f:[0,1]\to \mathbb{R}$ tales que $f\left(\frac{1}{2}\right)=0$ con las operaciones usuales es un espacio vectorial.

Solución: Primero observamos que nuestras operaciones están bien definidas: sabemos que la suma de funciones continuas es continua y si $f$ es continua y $\lambda\in \mathbb{R}$ es un escalar, entonces $\lambda f$ es continua. Más aún, si $f\left(\frac{1}{2}\right)=0$ y $g\left(\frac{1}{2}\right)=0$, entonces $(f+g) \left( \frac{1}{2}\right) =f\left( \frac{1}{2}\right) + g\left( \frac{1}{2}\right)=0+0=0$ y $\lambda f\left(\frac{1}{2}\right)=\lambda \cdot 0 =0$. En otras palabras, estos argumentos muestran que el conjunto es cerrado bajo las operaciones propuestas.

Ahora veamos que se cumplen los axiomas de espacio vectorial. Recuerda que para mostrar la igualdad de dos funciones, basta con mostrar que son iguales al evaluarlas en cada uno de los elementos de su dominio. En las siguientes demostraciones, $x$ es un real arbitrario en $[0,1]$

  1. Si $f,g,h$ son parte de nuestro conjunto, entonces
    \begin{align*}
    \left(f+(g+h)\right)(x)&= f(x)+(g+h)(x)\\ &= f(x)+g(x)+h(x) \\ &= (f+g)(x) +h(x)\\ &= ((f+g)+h)(x).
    \end{align*}
    Aquí estamos usando la asociatividad de la suma en $\mathbb{R}$
  2. Si $f,g$ son como en las condiciones, dado que la suma en números reales es conmutativa, $(f+g)(x)= f(x)+g(x)= g(x)+f(x)=(g+f)(x)$.
  3. La función constante $0$ es un neutro para la suma. Sí está en el conjunto pues la función $0$ en cualquier número (en particular en $\frac{1}{2}$) tiene evaluación $0$.
  4. Dada $f$ continua que se anula en $\frac{1}{2}$, $-f$ también es continua y se anula en $\frac{1}{2}$ y $f+(-f)= (-f)+f=0$.
  5. Si $a,b\in \mathbb{R}$ entonces $a(bf)(x)= a(bf(x))= (ab)f(x)$, por la asociatividad del producto en $\mathbb{R}$.
  6. Es claro que la constante $1$ satisface que $1\cdot f=f$, pues $1$ es una identidad para el producto en $\mathbb{R}$.
  7. $(a+b)f(x)= af(x)+bf(x)$, por la distributividad de la suma en $\mathbb{R}$
  8. $a\cdot (f+g)(x) = a\cdot (f(x)+g(x))= a\cdot f(x)+a\cdot g(x)$, también por la distributividad de la suma en $\mathbb{R}$.

Observa como las propiedades se heredan de las propiedades de los números reales: En cada punto usamos que las operaciones se definen puntualmente, luego aplicamos las propiedades para los números reales, y luego concluimos el resultado (como por ejemplo, en la prueba de la conmutatividad).

$\square$

Problema 2. Muestra que ninguno de los siguientes es un subespacio vectorial de $\mathbb{R}^3$.

  1. El conjunto $U$ de los vectores $x=(x_1, x_2, x_3)$ tales que $x_1^2+x_2^2+x_3^2=1$.
  2. El conjunto $V$ de todos los vectores en $\mathbb{R}^3$ con números enteros por coordenadas.
  3. El conjunto $W$ de todos los vectores en $\mathbb{R}^3$ que tienen al menos una coordenada igual a cero.

Solución:

  1. Notamos que el conjunto $U$ no es cerrado bajo sumas: En efecto, el vector $(1,0,0)\in U$, pues $1^2+0^2+0^2=1$, así como $(-1,0,0)\in U$, pues $(-1)^2+0^2+0^2=1$. Sin embargo su suma es $(0,0,0)$, que no es un elemento de $U$.
  2. Mientras que $V$ si es cerrado bajo sumas, no es cerrado bajo producto por escalares. Por ejemplo, $(2,8,1)\in V$, sin embargo $\frac{1}{2} (2,8,1)= \left(1,4,\frac{1}{2}\right)\notin V$, pues la última coordenada no es un número entero.
  3. El conjunto si es cerrado bajo producto por escalares, pero no bajo sumas: Tomando $(1,1,0)$ y $(0,0,1)$ en $W$, tenemos que $(1,1,0)+(0,0,1)=(1,1,1)\notin W$.

$\square$

Problema 3. Sea $V$ el conjunto de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ dos veces diferenciables (es decir, que tienen segunda derivada) que cumplen para todo $x\in \mathbb{R}$:

\begin{align*}
f»(x)+x^2 f'(x)-3f(x)=0.
\end{align*}

¿Es $V$ un subespacio de las funciones de $\mathbb{R}$ en $\mathbb{R}$ ?

Solución: En efecto, podemos verificar que $V$ cumple las condiciones de subespacio:

  1. Observamos que la función $f\equiv 0$ es dos veces diferenciable y satisface
    \begin{align*}
    f»(x)+x^2 f'(x)-3f(x)=0+x^2 \cdot 0 -3\cdot 0=0.
    \end{align*}
    Es decir $0\in V$. Esto muestra que $V$ es no vacío.
  2. Sean $f,g\in V$. Sabemos que entonces $f+g$ también es dos veces diferenciable (por ejemplo, de un curso de cálculo). Además
    \begin{align*}
    &(f+g)»(x)+x^2 (f+g)'(x)-3(f+g)(x)\\ & = f»(x)+g»(x)+x^2 f'(x)+x^2 g'(x)-3f(x)-3g(x)\\& = f»(x)+x^2f(x)-3f(x)+ g»(x)+x^2g(x)-3g(x)\\& =0+0=0.
    \end{align*}
    Así $f+g\in V$.
  3. Finalmente sea $f\in V$ y sea $\lambda \in \mathbb{R}$ un escalar. Sabemos que $\lambda f$ es dos veces diferenciable, y además
    \begin{align*}
    &\left(\lambda f\right)»(x)+x^2\left(\lambda f\right)(x)-3(\lambda f)(x)\\ &= \lambda f»(x)+\lambda x^2 f'(x)-\lambda 3f(x)\\ &= \lambda (f»(x)+x^2f'(x)-3f(x))\\ &= \lambda \cdot 0 =0.
    \end{align*}
    Luego $\lambda f\in V$.

$\square$

El ejemplo anterior es crucial para la intuición de tu formación matemática posterior. En él aparece una ecuación diferencial lineal homogénea. La moraleja es que «las soluciones a una ecuación diferencial lineal homogénea son un subespacio vectorial». En este curso no nos enfocaremos en cómo resolver estas ecuaciones, pues esto corresponde a un curso del tema. Sin embargo, lo que aprendas de álgebra lineal te ayudará mucho para cuando llegues a ese punto.

Problema 4. Sea $V$ el espacio de todas las funciones de $\mathbb{R}$ en $\mathbb{R}$ y sea $W$ el subconjunto de $V$ formado por todas las funciones $f$ tales que $f(0)+f(1)=0$.

  1. Verifica que $W$ es un subespacio de $V$.
  2. Encuentra un subespacio $S$ de $W$ tal que $V=W\oplus S$.

Solución:

  1. Verificamos los axiomas de subespacio vectorial:
    1. Tenemos que $0\in W$, pues $0(0)+0(1)=0+0=0$. Entonces $W$ no es vacío.
    2. Si $f,g\in W$ entonces $(f+g)(0)+(f+g)(1)= f(1)+f(0)+g(1)+g(0)=0+0=0$.
    3. Si $f\in W$ y $\lambda \in \mathbb{R}$ entonces $\lambda f(0)+\lambda f(1)= \lambda(f(0)+f(1))=\lambda \cdot 0=0$.
  2. Proponemos $S$ como el subespacio de todas las funciones $h$ tales que $h(x)=ax$ con $a\in \mathbb{R}$. Verifiquemos que $V=W\oplus S$.
    1. Si $F\in W\cap S$ entonces $F(0)+F(1)=0$, es decir $F(0)=-F(1)$, pero como $F(x)=ax$ para algún $a\in \mathbb{R}$ entonces $F(0)=0=F(1)=a$. Luego $F(x)=0\cdot x=0$.
    2. Dada $f\in V$, definimos
      \begin{align*}
      \hat{f}(x)= f(x)-(f(0)+f(1))x.
      \end{align*}
      Observamos que $\hat{f}\in W$, pues
      \begin{align*}
      \hat{f}(0)+\hat{f}(1)= f(0)+f(1)-f(0)-f(1)=0.
      \end{align*}
      Además es claro que
      \begin{align*}
      f(x)&= f(x)-(f(0)+f(1))x+(f(0)+f(1))x\\&= \hat{f}(x)+\left(f(0)+f(1)\right)x
      \end{align*}
      donde el sumando de la derecha es de la forma $a\cdot x$. Así $S+W=V$.

$\triangle$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Sea $A$ un conjunto no vacío. Sea $\mathcal{P}(A)$ el conjunto de todos los subconjuntos de $A$. Definimos las siguientes operaciones:
\begin{align*}
X+Y= X\Delta Y,\hspace{5mm} 1\cdot X=X,\hspace{5mm} 0\cdot X= \emptyset,\end{align*}
dónde $\Delta$ denota la operación de diferencia simétrica. Demuestra que así definido, $\mathcal{P}(A)$ es un espacio vectorial sobre el campo de dos elementos $\mathbb{F}_2$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»