Archivo de la etiqueta: invertible

Álgebra Lineal I: Cambios de base, parte 2

Introducción

En la entrada anterior definimos las matrices de cambio de base. Vimos algunas de sus propiedades básicas y mostramos cómo nos pueden ayudar para resolver el primero de los siguientes dos problemas.

  • Supongamos que tenemos dos bases B_1 y B_2 de un espacio vectorial V y que tomamos un vector v en V. Si ya sabemos la combinación lineal de elementos de B_1 que da v, ¿cómo podemos saber la combinación lineal de elementos de B_2 que da v? En otras palabras, ¿cómo podemos pasar a v de su expresión en base B_1 a su expresión en base B_2?
  • Supongamos que tenemos una transformación lineal T:V\to W entre dos espacios vectoriales V y W, dos bases B_1 y B_2 de V y dos bases C_1 y C_2 de W. Si ya sabemos qué le hace T a los elementos de V en términos de las bases B_1 y C_1, ¿cómo podemos saber qué hace T en términos de las bases B_2 y C_2?

El objetivo de esta entrada es ver cómo con las matrices de cambio de base también podemos resolver el segundo problema. Después de hacer esto, hablaremos de una noción fundamental en álgebra lineal: la de matrices similares.

Matrices de cambio de base y transformaciones lineales

Las matrices de cambios de base nos ayudan a entender a las matrices de transformaciones lineales en bases diferentes.

Teorema. Sea T:V\to W una transformación lineal entre espacios de dimensión finita V y W. Sean B_1 y B_2 bases de V, y C_1 y C_2 bases de W. Entonces

    \[\Mat_{C_2,B_2}(T) = \Mat_{C_2}(C_1)\Mat_{C_1,B_1}(T)\Mat_{B_1}(B_2).\]

Observa cómo la elección de orden en la notación está rindiendo fruto. En el lado derecho «van apareciendo las bases» en el «orden natural» C_2, C_1, B_1, B_2.

Demostración. Sean P=\Mat_{C_1}(C_2) y Q=\Mat_{B_1}(B_2). Por un resultado de la entrada anterior, P es la matriz que representa a la transformación identidad en W con respecto a las bases C_1 y C_2, es decir, P=\Mat_{C_1,C_2}(\text{id}_W).

Por cómo son las matrices de composiciones de transformaciones lineales, y usando que \text{id}_W\circ T=T, tenemos que

    \[\Mat_{C_1,C_2}(\text{id}_W)\Mat_{C_2,B_2}(T)=\Mat_{C_1,B_2}(T).\]

De manera análoga, Q es la matriz que representa a la transformación identidad en V con respecto a las bases B_1 y B_2, de donde tenemos que

    \[\Mat_{C_1,B_1}(T)\Mat_{B_1,B_2}(\text{id}_V)=\Mat_{C_1,B_2}(T).\]

De esta forma,

    \[P\Mat_{C_2,B_2}(T) = \Mat_{C_1,B_2}(T) = \Mat_{C_1,B_1}(T) Q.\]

El resultado se obtiene multiplicando por la izquierda ambos lados de esta ecuación por P^{-1}=\Mat_{C_2}(C_1).

\square

En la siguiente entrada se verán varios ejemplos que involucran crear matrices para transformaciones lineales, matrices de cambios de base y multiplicarlas para entender una transformación lineal en distintas bases.

Por el momento, dejamos únicamente un corolario del teorema anterior, para el caso en el que tenemos una transformación lineal de un espacio vectorial a sí mismo expresado en términos de dos bases.

Corolario. Sea T:V\to V una transformación lineal de un espacio vectorial V de dimensión finita a sí mismo. Sean B y B' bases de V y P la matriz de cambio de base de B a B'. Entonces

    \[\Mat_{B'}(T)=P^{-1}\Mat_{B}(T)P.\]

Matrices similares

Definición. Decimos que dos matrices A y B en M_{n}(F) son similares o conjugadas si existe una matriz invertible P en M_n(F) tal que B=P^{-1}AP.

En otras palabras, A y B son matrices similares si representan a una misma transformación lineal en diferentes bases.

Proposición. La relación «ser similares» es una relación de equivalencia en M_n(F).

Demostración. Toda matriz es similar a sí misma usando P=I_n, la identidad. Si A y B son similares con matriz invertible P, entonces B y A son similares con matriz invertible P^{-1}. Si A y B son similares con matriz invertible P y B y C son similares con matriz invertible Q, notemos que A=P^{-1}BP=P^{-1}(Q^{-1}CQ)P=(QP)^{-1}C(QP), de modo que A y C son similares con matriz invertible QP.

\square

¿Por qué es importante saber si dos matrices son similares? Resulta que dos matrices similares comparten muchas propiedades, como su traza, su determinante, su rango, etc. Para algunas matrices es más sencillo calcular estas propiedades. Así que una buena estrategia en álgebra lineal es tomar una matriz A «complicada» y de ahí encontrar una matriz similar B «más simple», y usar B para encontrar propiedades de A.

Veamos un ejemplo de esto. Mediante un sencillo argumento inductivo se puede mostrar lo siguiente.

Proposición. Si A y B son matrices similares con A=P^{-1}BP, entonces A^n=P^{-1}B^nP.

Si B fuera una matriz diagonal, entonces es fácil encontrar B^n: basta con elevar cada una de las entradas de su diagonal a la n (lo cual es mucho más fácil que hacer productos de matrices). Así, esto da una forma muy fácil de encontrar A^n: basta con encontrar B^n, y luego hacer dos multiplicaciones de matrices más, por P^{-1} a la izquierda y por P a la derecha.

Cuando A es una matriz similar a una matriz diagonal, decimos que A es diagonalizable. Una parte importante de lo que resta del curso consistirá en entender por qué las matrices simétricas con entradas reales son diagonalizables.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Deduce el corolario del teorema principal de esta entrada.
  • Considera \mathbb{R}[x]_2 de polinomios con coeficientes reales y grado a lo más dos. Sea T: \mathbb{R}[x]_2 la transformación tal qur T(p)=p', el polinomio derivado. Encuentra la matriz que representa a la transformación en la base \{1+x+x^2,1+2x,1\} y la matriz que representa a la transformación en la base \{1,x,x^2\}. Encuentra también la matriz de cambio de base de la primera a la segunda. Verifica que se cumple la conclusión del corolario.
  • Sean A y B matrices similares. Muestra que A es invertible si y sólo si B lo es.
  • Sean A y B matrices similares. Muestra que A y B tienen la misma traza.
  • Completa el argumento inductivo para demostrar la última proposición.
  • Considera la matriz con entradas complejas A=\begin{pmatrix}1 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -1 \end{pmatrix}. Encuentra A^{105}.

Álgebra Lineal I: Cambios de base, parte 1

Introducción

En la entrada anterior platicamos de cómo podemos comenzar con una transformación lineal T:V\to W entre espacios vectoriales V y W y de ahí obtener una «matriz que la represente». Para ello, necesitamos elegir bases B_V y B_W de V y W respectivamente. Si elegimos bases diferentes, entonces la matriz que obtendremos será diferente, por lo cual es muy importante siempre recordar qué bases elegimos.

Es posible que en algunas aplicaciones de álgebra lineal tengamos una transformación T:V\to W, y que los vectores de V o los de W los tengamos que entender en más de una base. Así, los dos siguientes problemas aparecen frecuentemente:

  • Supongamos que tenemos dos bases B_1 y B_2 de un espacio vectorial V y que tomamos un vector v en V. Si ya sabemos la combinación lineal de elementos de B_1 que da v, ¿cómo podemos saber la combinación lineal de elementos de B_2 que da v? En otras palabras, ¿cómo podemos pasar a v de su expresión en base B_1 a su expresión en base B_2?
  • Supongamos que tenemos una transformación lineal T:V\to W entre dos espacios vectoriales V y W, dos bases B_1 y B_2 de V y dos bases C_1 y C_2 de W. Si ya sabemos qué le hace T a los elementos de V en términos de las bases B_1 y C_1, ¿cómo podemos saber qué hace T en términos de las bases B_2 y C_2?

Las herramientas que necesitamos para responder ambos problemas se llaman matrices de cambios de base. El objetivo de esta entrada es definir estas matrices, ver algunas propiedades básicas que cumplen y ver cómo nos ayudan a resolver el primero de los problemas de aquí arriba. En una segunda entrada veremos cómo también servirán para resolver el segundo.

Matriz de cambio de base

Definición. Sea V un espacio vectorial sobre el campo F. Sean B=(v_1,\ldots,v_n) y B'=(v_1', \ldots, v_n') dos bases ordenadas de V. La matriz de cambio de base de B a B' es la matriz P=[p_{ij}] en M_{n}(F) cuya columna j tiene como entradas a las coordenadas de v_j' escrito en términos de la base B. En otras palabras, las entradas p_{1j},\ldots,p_{nj} de la j-ésima columna de P son los únicos elementos de F para los cuales

    \[v_j'=p_{1j}v_1+\ldots +p_{nj} v_n,\]

para toda j=1,2,\ldots,n.

Ejemplo. Considera la base ordenada B=(1,x,x^2) de R[x]_2, el espacio vectorial de polinomios de coeficientes reales grado a lo más 2. Veremos que B'=(3x^2,2x,1) es una base de R[x]_2. Encontraremos la matriz de cambio de base de B a B' y la matriz de cambio de base de B' a B.

La dimensión de R[x]_2 es 3 y B' tiene 3 elementos, así que basta ver que los elementos de B' son linealmente independientes para ver que B' es base. Una combinación lineal a(3x^2)+b(2x)+c(1)=0 es equivalente a que 3ax^2+2bx+c=0, lo cual sucede si y sólo si a=b=c=0. Esto muestra que B' es base.

Para encontrar a la matriz de cambio de base de B a B' lo que tenemos que hacer es escribir a los elementos de B' como combinación lineal de los elementos de B. Esto lo hacemos de la siguiente manera (recuerda que el orden es importante):

    \begin{align*}3x^2 &= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2\\2x &= 0\cdot 1+ 2\cdot x + 0 \cdot x^2\\1 & = 1\cdot 1 + 0 \cdot x + 0 \cdot x^2.\end{align*}

Como los coeficientes de 3x^2 en la base ordenada B son 0, 0 y 3, entonces la primer columna de la matriz de cambio de base será (0,0,3). Argumentando de manera similar para 2x y 1, tenemos que la matriz de cambio de base de B a B' es

    \[\begin{pmatrix}0 & 0 & 1\\0 & 2 & 0 \\3 & 0 & 0\end{pmatrix}.\]

Para encontrar a la matriz de cambio de base de B' a B, expresamos a los elementos de B en términos de la base B' como sigue:

    \begin{align*}1 &= 0 \cdot (3x^2) + 0 \cdot (2x) + 1 \cdot 1\\x &= 0\cdot (3x^2)+ \frac{1}{2} \cdot (2x) + 0 \cdot 1\\x^2 & = \frac{1}{3} \cdot (3x^2) + 0 \cdot (2x) + 0 \cdot 1.\end{align*}


De esta manera, tenemos que la matriz de cambio de base de B' a B es

    \[\begin{pmatrix}0 & 0 & \frac{1}{3}\\0 & \frac{1}{2} & 0 \\1 & 0 & 0\end{pmatrix}.\]

\square

La matriz de cambio de base nos ayuda a responder la primer pregunta que planteamos al inicio de esta entrada. Si conocemos las coordenadas de un vector en una base, podemos usar la matriz de cambio de base para encontrar las coordenadas del vector en otra base.

Proposición. Sea V un espacio vectorial de dimensión n, B=(v_1,\ldots,v_n), B'=(v_1',\ldots,v_n') bases ordenadas de V y P la matriz de cambio de base de B a B'. Supongamos que el vector v de V se escribe en base B como

    \[v=c_1v_1+c_2v_2+\ldots+c_nv_n\]

y en base B' como

    \[v=c_1'v_1'+c_2'v_2'+\ldots+c_n'v_n'.\]

Entonces:

    \[P \begin{pmatrix}c_1' \\\vdots \\c'_n\end{pmatrix}=\begin{pmatrix}c_1 \\\vdots \\c_n\end{pmatrix} .\]

En otras palabras, la matriz P de cambio de base de B a B' manda las coordenadas de un vector en base B' a coordenadas en base B al multiplicar por la izquierda. Ojo: para construir P expresamos a B' en términos de B, pero lo que hace P es expresar a alguien en de coordenadas B' a coordenadas en B.

Demostración. El vector de coordenadas de v_j' escrito en base B' es el vector canónico e_j de F^n. Además, Pe_j es la j-ésima columna de P, que por construcción es el vector de coordenadas de v_j' en la base B. Así, el resultado es cierto para los vectores v_j' de la base B'. Para cualquier otro vector v, basta expresarlo en términos de la base B' y usar la linealidad de asignar el vector de coordenadas y la linealidad de P.

\square

Problema. Escribe a los vectores v_1=(4,3,5,2), v_2=(2,2,2,2) y v_3(0,0,0,1) de \mathbb{R}^4 como combinación lineal de los elementos de la base B de \mathbb{R}^4 conformada por los vectores (1,0,0,0), (1,1,0,0), (1,1,1,0) y (1,1,1,1).

Solución. Conocemos las coordenadas de v_1,v_2,v_3 en la base canónica (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1). De hecho, el vector de coordenadas de v_1 es exactamente v_1 (esto es algo que sucede pues estamos trabajando en \mathbb{R}^4). Lo que nos estan pidiendo son las coordenadas de v_1,v_2,v_3 en la base B. Nos gustaría usar la proposición anterior. Para ello, necesitamos encontrar la matriz de cambio de base de B a la base canónica. Escribamos entonces a la base canónica en términos de los vectores de B:

    \begin{align*}(1,0,0,0)&=1\cdot (1,0,0,0)+0\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\(0,1,0,0)&= -1\cdot (1,0,0,0)+1\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\(0,0,1,0)&= 0\cdot (1,0,0,0)-1\cdot (1,1,0,0)+1\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\(0,0,0,1)&= 0\cdot (1,0,0,0)+0\cdot (1,1,0,0)-1\cdot (1,1,1,0)+1\cdot (1,1,1,1)\\\end{align*}

A estas coordenadas las ponemos como columnas para encontrar la matriz de cambio de base de B a la base canónica:

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix}.\]

Para encontrar las coordenadas de v_1, v_2, v_3 en términos de la base B, basta con multiplicar esta matriz a la izquierda para cada uno de ellos:

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix} \begin{pmatrix}4 \\3 \\ 5 \\ 2\end{pmatrix} =  \begin{pmatrix}1 \\-2 \\ 3\\ 2\end{pmatrix},\]

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix} \begin{pmatrix}2 \\2 \\ 2 \\ 2\end{pmatrix} = \begin{pmatrix}0 \\0 \\ 0\\ 2\end{pmatrix}\]

y

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix} \begin{pmatrix}0 \\0 \\ 0 \\ 1\end{pmatrix} = \begin{pmatrix}0 \\0 \\ -1\\ 1\end{pmatrix}.\]

En efecto, se puede verificar que estos nuevos vectores dan las combinaciones lineales de la base B que hacen a v_1, v_2 y v_3, por ejemplo, para v_1 tenemos:

    \[(4,5,3,2)=(1,0,0,0)-2(1,1,0,0)+3(1,1,1,0)+2(1,1,1,1).\]

\square

Matriz de cambio de base como matriz de transformación lineal

A la matriz de cambio de base de B a B' la denotamos por \text{Mat}_B(B').

Una observación crucial es que podemos pensar a una matriz de cambio de base en un espacio vectorial V justo como como una matriz correspondiente a una transformación lineal de las que vimos en la entrada pasada. De hecho, la transformación lineal que le corresponde es muy bonita: es la identidad \text{id}_V que manda a cada vector de V a sí mismo.

De manera más concreta, si B y B' son bases de V y \text{Mat}_B(B') es la matriz de cambio de base de B a B', entonces

    \[\text{Mat}_B(B')=\text{Mat}_{B,B'}(\text{id}_V).\]

A estas alturas tienes todas las herramientas necesarias para demostrar esto.

¿Qué sucede si ahora tenemos tres bases B, B' y B'' de V y componemos a la identidad consigo misma? Utilizando los argumentos de la entrada anterior, la matriz correspondiente a la composición es el producto de las matrices de cada transformación. Juntando esto con la observación anterior, tenemos la siguiente propiedad para matrices de cambio de base:

    \[\text{Mat}_B(B'')=\text{Mat}_{B}(B')\cdot \text{Mat}_{B'}(B'').\]

Finalmente, ¿qué sucede si en la igualdad anterior ponemos B''=B? Al lado izquierdo tenemos la matriz de cambio de base de B a sí misma, que puedes verificar que es la identidad. Al lado derecho tenemos al producto de la matriz de cambio de base de B a B' con la matriz de cambio de B' a B. Esto muestra que las matrices de cambio de base son invertibles.

Resumimos todas estas observaciones en la siguiente proposición:

Proposición. Sean B, B' y B'' bases del espacio vectorial de dimensión finita V.

  • La matriz de cambio de base de B a B' corresponde a la matriz de la transformación identidad de V a V, en donde el primer V lo pensamos con la base B' y al segundo con la base B.
  • El producto de matrices de cambio de base de B a B' y de B' a B'' es la matriz de cambio de base de B a B''.
  • La matriz de cambio de base de B a B' es invertible, y su inversa es la de cambio de base de B' a B.

En la próxima entrada veremos cómo las matrices de cambio de base también nos ayudan a entender transformaciones lineales bajo distintas bases.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede en el primer ejemplo si multiplicas ambas matrices de cambio de base que encontramos?
  • En el segundo ejemplo, encuentra la matriz de cambio de base de la base canónica a la matriz B
  • Considera las cuatro matrices de 2\times 2 que puedes formar colocando tres unos y un cero. Muestra que estas cuatro matrices forman una base B de M_{2,2}(\mathbb{R}). Determina la matriz de cambio de base de B a la base canónica de M_{2,2}(\mathbb{R}). Ojo: Una cosa son los elementos del espacio vectorial y otra cosa van a ser las matrices de cambio de base. Como M_{2,2}(\mathbb{R}) es de dimensión 4, la matriz de cambio de base que tienes que determinar en realidad es de 4\times 4.
  • Da una demostración de que, en efecto

        \[\text{Mat}_B(B')=\text{Mat}_{B,B'}(\text{id}_V).\]

  • Verifica que la matriz de cambio de base B a sí misma es la identidad.