Archivo de la etiqueta: independencia

Álgebra Superior I: El espacio vectorial $\mathbb{R}^n$

Por Eduardo García Caballero

Introducción

En la entrada anterior introdujimos conceptos relacionados a los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$. Hablamos de vectores, combinaciones lineales, espacio generado, independencia lineal y bases. Ahora haremos lo análogo en dimensiones más altas, para lo cual hablaremos de $\mathbb{R}^n$.

La idea es sencilla, queremos extender lo que ya hicimos para vectores con $5$ o $100$ entradas. Sin embargo, visualizar estos espacios y entender su geometría ya no será tan sencillo. Es por esta razón que principalmente nos enfocaremos a generalizar las propiedades algebraicas que hemos discutido. Esta resultará una manera muy poderosa de estudiar los espacios vectoriales, pues nos permitirá generalizar sin mucha dificultad los conceptos aprendidos en la entrada anterior al espacio $\mathbb{R}^n$ para cualquier número natural $n$.

Definición del espacio vectorial $\mathbb{R}^n$

En la entrada anterior vimos cuáles son propiedades que debe cumplir una colección de objetos, en conjunto con una operación de suma y otra de producto escalar, para poder considerarse un espacio vectorial. Como ya vimos, tanto $\mathbb{R}^2$ y $\mathbb{R}^3$ son espacios vectoriales. Podemos definir a $\mathbb{R}^n$ y a sus operaciones como sigue.

Definición. El conjunto $\mathbb{R}^n$ consiste de todas las $n$-adas ordenadas $u=(u_1,u_2,\ldots,u_n)$ en donde cada $u_i$ es un número real, para $i=1,\ldots,n$. A $u_i$ le llamamos la $i$-ésima entrada de $u$. Para dos elementos de $\mathbb{R}^n$, digamos

\begin{align*}
u&=(u_1,u_2,\ldots,u_n)\\
v&=(v_1,v_2,\ldots,v_n),
\end{align*}

definimos la suma $u+v$ como la $n$-áda cuya $i$-ésima entrada es $u_i+v_i$ (decimos que sumamos entrada a entrada). En símbolos, $$u+v=(u_1+v_1,u_2+v_2,\ldots,u_n+v_n).$$

Además, si tomamos un real $r$, definimos el producto escalar de $r$ con $u$ como la $n$-ada cuya $i$-ésima entrada es $r u_i$, es decir, $ru=(ru_1,ru_2,\ldots,ru_n).$

El conjunto $\mathbb{R}^n$ con esta suma y producto escalar cumple ser un espacio vectorial. A continuación probaremos sólo algunas de las propiedades, ¿puedes completar el resto?

1. La suma es asociativa:
\begin{align*}
(u+v)+w
&= ((u_1,u_2,\ldots,u_n) + (v_1,v_2,\ldots,v_n)) + (w_1,w_2,\ldots,w_n) \\
&= (u_1+v_1,u_2+v_2,\ldots,u_n+v_n) + (w_1,w_2,\ldots,w_n) \\
&= ((u_1+v_1)+w_1,(u_2+v_2)+w_2,\ldots,(u_n+v_n)+w_n) \\
&= (u_1+(v_1+w_1),u_2+(v_2+w_2),\ldots,u_n+(v_n+w_n)) \\
&= (u_1,u_2,\ldots,u_n) + (v_1+w_1,v_2+w_2,\ldots,v_n+w_n) \\
&= (u_1,u_2,\ldots,u_n) + ((v_1,v_2,\ldots,v_n) + (w_1,w_2,\ldots,w_n)) \\
&= u + (v+w).
\end{align*}

La cuarta igualdad usa el paso clave de que en $\mathbb{R}$ sí sabemos que la suma es asociativa.

2. La suma es conmutativa:
\[
u+v = v+w.
\]

¡Intenta demostrarlo!

3. Existe un elemento neutro para la suma, que es el elemento de $\mathbb{R}^n$ en donde todas las entradas son iguales al neutro aditivo $0$ de $\mathbb{R}$:
\begin{align*}
u+0
&= (u_1,u_2,\ldots,u_n) + (0,0,\ldots,0) \\
&= (u_1+0,u_2+0,\ldots,u_n+0) \\
&= (u_1,u_2,\ldots,u_n) \\
&= u.
\end{align*}

Para demostrar esta propiedad, necesitaras usar que en $\mathbb{R}$ cada $u_i$ tiene inverso aditivo.

4. Para cada $n$-tupla existe un elemento inverso:
\[
u + (-u) = 0.
\]

5. La suma escalar se distribuye bajo el producto escalar:
\begin{align*}
(r+s)u
&= (r+s)(u_1,u_2,\ldots,u_n) \\
&= ((r+s)u_1,(r+s)u_2,\ldots,(r+s)u_n) \\
&= (ru_1 + su_1, ru_2 + su_2, \ldots, r_n + su_n) \\
&= (ru_1,ru_2,\ldots,ru_n) + (su_1,su_2,\ldots,su_n) \\
&= r(u_1,u_2,\ldots,u_n) + s(u_1,u_2,\ldots,u_n) \\
&= ru + su.
\end{align*}

Una vez más, se está usando una propiedad de $\mathbb{R}$ para concluir una propiedad análoga en $\mathbb{R}^n$. En este caso, se está usando fuertemente que hay una propiedad de distributividad en $\mathbb{R}$.

6. La suma de $n$-tuplas de distribuye bajo el producto de escalares:
\[
r(u+v) = ru + rv.
\]

7. El producto escalar es compatible con el producto de $\mathbb{R}$:
\begin{align*}
(rs)u
&= (rs)(u_1,u_2,\ldots,u_n) \\
&= ((rs)u_1,(rs)u_2,\ldots,(rs)u_n) \\
&= (r(su_1),r(su_2),\ldots,r(su_n)) \\
&= r(su_1, su_2, \ldots, su_n) \\
&= r(s(u_1,u_2,\ldots,u_n)) \\
&= r(su).
\end{align*}

8. El neutro multiplicativo $1$ de $\mathbb{R}$ funciona como neutro para el producto escalar:
\[
1u = u.
\]

De este modo, podemos trabajar con el espacio vectorial $\mathbb{R}^n$ para explorar sus propiedades. La gran ventaja es que lo que demostremos para $\mathbb{R}^n$ en general lo podremos usar para cualquier valor particular de $n$. y poder emplearlas cuando trabajemos con algún número $n$ en particular.

Combinaciones lineales y espacio generado

Al igual que hicimos con $\mathbb{R}^2$ y $\mathbb{R}^3$ podemos definir los conceptos de combinación lineal y espacio generado para el espacio vectorial $\mathbb{R}^n$.

Definición. En $\mathbb{R}^n$, diremos que un vector $u$ es combinación lineal de los vectores $v_1,\ldots,v_k$ si y sólo si existen números reales $r_1,\ldots,r_n$ en $\mathbb{R}$ tales que
\[
u = r_1v_1 + r_2v_2 + \cdots + r_kv_k.
\]

Ejemplo. En $\mathbb{R}^5$, el vector $(3,4,-2,5,5)$ es combinación lineal de los vectores $(2,1,2,0,3)$, $(0,1,-1,3,0)$ y $(1,-1,5,-2,1)$, pues
\[
(3,4,-2,5,5) = 2(2,1,2,0,3) + 1(0,1,-1,3,0) + -1(1,-1,5,-2,1).
\]

$\triangle$

La noción de combinación lineal nos permite hablar de todas las posibles combinaciones lineales, así como en $\mathbb{R}^2$ y $\mathbb{R}^3$.

Definición. Dado un conjunto de vectores $v_1,\ldots,v_n$ en $\mathbb{R}^n$, podemos definir el espacio generado por estos vectores como el conjunto de todas las posibles combinaciones lineales de $v_1,\ldots,v_n$ en $\mathbb{R}^n$.

Es este caso, ya no podremos visualizar geométricamente el espacio generado (aunque con un poco de imaginación, quizás puedas generalizar lo que ya hicimos en dimensiones anteriores: ¿cómo se vería un plano en $\mathbb{R}^4$?, ¿cómo se vería un sub-$\mathbb{R}^3$ de $\mathbb{R}^4$?). De cualquier manera, sí podemos seguir respondiendo preguntas del espacio generado a través de sistemas de ecuaciones.

Ejemplo. ¿El espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$ y $(1,0,2,1)$ es $\mathbb{R}^4$?

Para ver si $\mathbb{R}^4$ es el espacio generado por los vectores propuestos, debemos asegurarnos de que cada vector en $\mathbb{R}^4$ se pueda expresar como combinación lineal de estos. Entonces, seleccionamos un vector $(a,b,c,d)$ arbitrario en $\mathbb{R}^4$, y debemos ver si existen escalares $q$, $r$, $s$ y $t$ tales que
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d);
\]
esto es,
\[
(q,q,q,0) + (0,3r,r,2r) + (2s,3s,s,0) + (t,0,2t,t) = (a,b,c,d),
\]
que equivale a
\[
(q+2s+t, q+3r+3s, q+r+s+2t, 2r+t)=(a,b,c,d),
\]
lo cual a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
q & +{} & & +{} & 2s & +{} & t & = a \\
q & +{} & 3r & +{} & 3s & & & = b \\
q & +{} & r & +{} & s & +{} & 2t & = c \\
& & 2r & & & +{} & t & = d,
\end{alignedat}
\right.
\]
el cual podemos representar como
\[
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}.
\]
Además, podemos observar que la matriz en el lado izquierdo tiene determinante distinto de $0$ (para verificar esto, tendrás que calcularlo), lo que nos indica que es invertible, y la igualdad anterior equivale a
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 2 & 1 \\
1 & 3 & 3 & 0 \\
1 & 1 & 1 & 2 \\
0 & 2 & 0 & 1
\end{pmatrix}^{-1}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
o bien,
\[
\begin{pmatrix}
q \\ r \\ s \\ t
\end{pmatrix}
=
\begin{pmatrix}
-3 & 1 & 3 & -3 \\
-1/2 & 1/4 & 1/4 & 0 \\
3/2 & -1/4 & -5/4 & 1 \\
1 & -1/2 & -1/2 & 1
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix},
\]
de donde tenemos la solución para $q,r,s,t$ siguiente:
\[
\left\{
\begin{alignedat}{4}
q & = & -3a & +{} & b & +{} & 3c & -{} & 3d \\
r & = & -\tfrac{1}{2}a & +{} & \tfrac{1}{4}b & +{} & \tfrac{1}{4}c & & \\
s & = & \tfrac{3}{2}a & -{} & \tfrac{1}{4}b & -{} & \tfrac{5}{4}c & +{} & d \\
t & = & a & -{} & \tfrac{1}{2}b & -{} & \tfrac{1}{2}c & +{} & d.
\end{alignedat}
\right.
\]
Este sistema nos da una fórmula para los escalares $q$, $r$, $s$ y $t$ en función del valor de las entradas del vector $(a,b,c,d)$, y estos escalares satisfacen
\[
q(1,1,1,0) + r(0,3,1,2) + s(2,3,1,0) + t(1,0,2,1) = (a,b,c,d).
\]
Como esto se cumple para un vector arbitrario $(a,b,c,d)$ en $\mathbb{R}^4$, entonces se cumple para todos los vectores de $\mathbb{R}^4$; es decir, ¡$\mathbb{R}^4$ es el espacio generado por los vectores $(1,1,1,0)$, $(0,3,1,2)$, $(2,3,1,0)$, $(1,0,2,1)$!

$\triangle$

Nuestra técnica de resolver sistemas de ecuaciones mediante la inversa de la matriz asociada ha resultado muy útil. Hemos tenido un poco de suerte en que la matriz sea invertible. Si no lo fuera, no podríamos haber hecho el procedimiento descrito en el ejemplo. ¿Será que si la matriz no es invertible, entonces el sistema no se podrá resolver? La respuesta es compleja: a veces sí, a veces no. En ese caso hay que entender el sistema de ecuaciones con otro método, como reducción gaussiana.

Independencia lineal

Cuando exploramos las propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$, observamos que hay ocasiones en las que el espacio generado por un conjunto de vectores es «más chico» de lo que se esperaría de la cantidad de vectores: por ejemplo, dos vectores en $\mathbb{R}^2$ generan una línea (y no todo $\mathbb{R}^2$) cuando estos dos se encuentran alineados con el origen. Cuando tres vectores en $\mathbb{R}^3$ no están alineados, pero se encuentran sobre el mismo plano por el origen, su espacio generado es dicho plano (y no todo $\mathbb{R}^3$).

Aunque el el espacio vectorial $\mathbb{R}^n$ no podamos visualizarlo de manera inmediata, podemos mantener la intuición de que un conjunto de vectores «genera todo lo que puede generar» o «genera algo más chico». Para identificar en qué situación nos encontramos, recurrimos a la siguiente definición.

Definición. Dado un conjunto de $k$ vectores $v_1, v_2, \ldots, v_k$ en $\mathbb{R}^n$ distintos de 0, diremos son linealmente independientes si la única forma de escribir al vector 0 como combinación lineal de ellos es cuando todos los coeficientes de la combinación lineal son igual al escalar 0; es decir, si tenemos que
\[
r_1v_1 + r_2v_2 + \cdots + r_kv_k = 0,
\]
entonces forzosamente $r_1 = r_2 = \cdots = r_n = 0$.

Teniendo esta definición en consideración, se puede mostrar que si un conjunto de vectores es linealmente independiente, entonces ninguno de los vectores se puede escribir como combinación lineal de los otros. De hecho, es únicamente en este caso cuando cuando el espacio generado por los vectores es «todo lo que se puede generar».

La justificación de por qué sucede esto es similar a la que vimos en la entrada anterior: como el primer vector es no genera una línea. Como el segundo vector no se puede escribir como combinación lineal del primero, entonces queda fuera de esta línea y ambos generan un plano. Como el tercer vector no se puede escribir como combinación lineal de los primeros dos, entonces queda fuera del plano, y entre los tres generan un espacio «más grande» («de dimensión $3$»). A partir de este punto, quizá no podamos visualizar inmediatamente la forma geométrica del espacio generado, pero como sabemos que los vectores son linealmente independientes, entonces el cuarto vector no se puede escribir como combinación lineal de los primeros tres. Por ello, queda fuera del espacio generado por los primeros tres, y el espacio generado por los cuatro es aún «más grande» («de dimensión $4$»); y así sucesivamente, para tantos vectores linealmente independientes como tengamos.

Una herramienta que podemos emplear para determinar cuándo un conjunto de vectores es linealmente independiente son nuevamente los sistemas de ecuaciones. Para esto veamos el siguiente ejemplo.

Ejemplo. ¿Son los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ linealmente independientes en $\mathbb{R}^4$?

Supongamos que para ciertos escalares $a$, $b$, $c$ y $d$, se cumple que
\[
a(1,5,1,-2) + b(3,-3,0,-1) + c(-2,0,4,1) + d(0,1,-1,0) = (0,0,0,0).
\]
Esto es equivalente a decir que
\[
(a,5a,a,-2a) + (3b,-3b,0,-b) + (-2c,0,4c,c) + (0,d,-d,0) = (0,0,0,0)
\]
que equivale a
\[
(a+3b-2c, 5a-3b+d,a+4c-d,-2a-b+c) = (0,0,0,0),
\]
y a su vez equivale al sistema de ecuaciones
\[
\left\{
\begin{alignedat}{4}
a & +{} & 3b & -{} & 2c & & & = 0 \\
5a & -{} & 3b & & & +{} & d & = 0 \\
a & & & +{} & 4c & -{} & d & = 0 \\
-2a & -{} & b & +{} & c & & & = 0
\end{alignedat}
\right.
\]
el cual podemos representar de la forma
\[
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
y, como notamos que la matriz del lado izquierdo de la ecuación tiene determinante distinto de 0 (¿puedes verificarlo?), entonces es invertible, de modo que
\[
\begin{pmatrix}
a \\ b \\ c \\ d
\end{pmatrix}
=
\begin{pmatrix}
1 & 3 & -2 & 0 \\
5 & -3 & 0 & 1 \\
1 & 0 & 4 & -1 \\
-2 & 1 & 1 & 0
\end{pmatrix}^{-1}
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix}
=
\begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix},
\]
es decir,
\[
a = b = c = d = 0,
\]
lo que nos indica, basándonos en la definición, que los vectores anteriores son linealmente independientes.

$\triangle$

El ejemplo anterior nos da una idea de lo que debe cumplir un conjunto linealmente independiente de $n$ vectores en $\mathbb{R}^n$. En general, podemos mostrar que un conjunto de $n$ vectores $v_1 = (v_{11}, v_{12}, \ldots, v_{1n})$, $v_2 = (v_{21}, v_{22}, \ldots, v_{2n})$, $\ldots$, $v_n = (v_{n1}, v_{n2}, \ldots, v_{nn})$ es linealmente independiente si y sólo si la matriz
\[
\begin{pmatrix}
v_{11} & v_{21} & \cdots & v_{n1} \\
v_{12} & v_{22} & \cdots & v_{n2} \\
\vdots & \vdots & \ddots & \vdots \\
v_{1n} & v_{2n} & \cdots & v_{nn}
\end{pmatrix},
\]
formada por los vectores escritos como columna, es invertible. Esto ya platicamos que está relacionado con que su determinante sea distinto de 0. Pero no en todas las situaciones tendremos tantos vectores como entradas y entonces tendremos que estudiar el sistema de ecuaciones lineales con otras técnicas, como reducción gaussiana.

Ejemplo. ¿Serán los vectores $(1,2,3,4,5)$, $(6,7,8,9,10)$ y $(11,12,13,14,15)$ de $\mathbb{R}^5$ linealmente independientes? Tal y como lo hemos hecho arriba, podemos preguntarnos si hay reales $a,b,c$ tales que $$a(1,2,3,4,5)+b(6,7,8,9,10)+c(11,12,13,14,15)=(0,0,0,0,0),$$ y que no sean todos ellos cero. Tras plantear el sistema como sistema de ecuaciones y luego en forma matricial, lo que se busca es ver si el sistema $\begin{pmatrix} 1 & 6 & 11 \\ 2 & 7 & 12 \\ 3 & 8 & 13 \\ 4 & 9 & 14 \\ 5 & 10 & 15 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $ tiene alguna solución no trivial. Esto puede entenderse aplicando reducción gaussiana a $A$, que muestra que toda solución al sistema anterior es solución al sistema $\begin{pmatrix} 1 & 0 & -1\\0 & 1 & 2\\0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0\end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$ lo cual nos lleva a que el sistema original es equivalente al sistema $$\left\{ \begin{array} \,a – c &= 0\\ b + 2c &= 0\end{array}.\right.$$

De aquí, podemos tomar a $c$ como cualquier valor, digamos $1$, de donde $a=1$ y $b=-2$ es solución. En resumen, hemos detectado que $$(1,2,3,4,5)-2(6,7,8,9,10)+(11,12,13,14,15)=(0,0,0,0,0),$$ que es una combinación lineal de los vectores donde no todos los coeficientes son cero. Por ello, no son linealmente intependientes.

Puedes intentar «imaginar» esto como que son vectores en $\mathbb{R}^5$ (un espacio de «dimensión $5$»), pero no generan dentro de él algo de dimensión $3$, sino algo de dimensión menor. Como $(1,2,3,4,5)$ y $(6,7,8,9,10)$ sí son linealmente independientes (¡demuéstralo!), entonces los tres vectores en realidad generan sólo un plano mediante sus combinaciones lineales.

$\square$

Bases

De manera similar a lo que observamos en la entrada anterior, hay ocasiones en las que un conjunto de vectores no tiene como espacio generado a todo $\mathbb{R}^n$. Por otra parte, hay ocasiones en las que el conjunto de vectores sí genera a todo $\mathbb{R}^n$, pero lo hace de manera «redundante», en el sentido de que, aunque su espacio generado sí es todo $\mathbb{R}^n$, podríamos quitar a algún vector del conjunto y el espacio generado sería el mismo. La siguiente definición se enfoca en los conjuntos en los que no pasa mal ninguna de estas cosas. Es decir, los vectores generan exactamente al espacio: cada vector se genera por una y sólo una combinación lineal de ellos.

Definición. Diremos que un conjunto de vectores $v_1, v_2, \ldots, v_k$ es base del esapacio vectorial $\mathbb{R}^n$ si el conjunto de vectores es linealmente independiente y el espacio generado por estos es exactamente $\mathbb{R}^n$.

Ejemplo. Al igual que en $\mathbb{R}^2$ y $\mathbb{R}^3$, la «base canónica» es el primer ejemplo que seguramente se nos viene a la mente. La base canónica en $\mathbb{R}^n$ consiste en los $n$ vectores $\mathrm{e}_1 = (1,0,0,\cdots,0)$, $\mathrm{e}_2 = (0,1,0,\cdots,0)$, $\mathrm{e}_3 = (0,0,1,\ldots,0)$, $\ldots$, $\mathrm{e}_n = (0,0,0,\cdots,1)$. Es claro que cualquier vector $u = (u_1,u_2,\cdots,u_n)$ es combinación lineal de $\mathrm{e}_1,\ldots,\mathrm{e}_n$ pues podemos expresarlo como
\begin{align*}
u
&= (u_1,u_2,\cdots,u_n) \\
&= (u_1,0,\cdots,0) + (0,u_2,\cdots,0) + \cdots (0,0,\cdots,u_n) \\
&= u_1(1,0,\cdots,0) + u_2(0,1,\cdots,0) + \cdots + u_n(0,0,\cdots,1) \\
&= u_1\mathrm{e}_1 + u_2\mathrm{e}_2 + \cdots + u_n\mathrm{e}_n.
\end{align*}
Además, los vectores $\mathrm{e}_1,\ldots,\mathrm{e}_n$ son linealmente independientes (¿puedes ver por qué?). De este modo, verificamos que la «base canónica» es, en efecto, una base.

$\triangle$

Ejemplo. Más arriba verificamos que los vectores $(1,5,1,-2)$, $(3,-3,0,-1)$, $(-2,0,4,1)$ y $(0,1,-1,0)$ son linealmente independientes. Además, vimos que la matriz formada por estos es invertible. De este modo, verificamos que estos vectores forman una base para $\mathbb{R}^4$.

$\triangle$

Más adelante…

A lo largo de esta unidad nos hemos enfocado en estudiar a vectores, matrices, ecuaciones lineales y espacios vectroriales. En las últimas entradas, vimos que hay ocho condiciones que se deben cumplir para que un conjunto de objetos matemáticos (junto con una operación de suma y una de producto escalar) sean considerados espacio vectorial. Todos los ejemplos de espacio vectorial que vimos son de la forma $\mathbb{R}^n$, sin embargo, puede surgir la pregunta, ¿existen espacios vectoriales que no sean de esta forma?

De hecho, si has estado prestando atención en la formalidad de los resultados, hay muchos resultados que han quedado pendientes:

  • ¿Por qué el determinante no depende de la fila o columna en la que se expanda?
  • Si tenemos matrices de $n\times n$, ¿por qué son invertibles si y sólo si el determinate es cero?
  • En matrices de $n\times n$, ¿por qué el determinante es multiplicativo?
  • ¿Cómo se formaliza el proceso de reducción gaussiana y para qué más sirve?
  • ¿Será que podemos tener muchos vectores linealmente independientes en $\mathbb{R}^n$? ¿Será posible tener un conjunto generador de menos de $n$ vectores para $\mathbb{R}^n$? ¿Por qué?

Estas dudas no se resuelven en el curso de Álgebra Superior 2, que sigue a este. Sin embargo, en el curso de Álgebra Lineal I sí se resuelven varias de estas dudas.

Además, podrás ver que hay otros tipos de objetos matemáticos distintos a las listas ordenadas y que también forman un espacio vectorial; algunos con los cuales ya hemos trabajado, como lo son las matrices, y otros que se comportan de manera muy poco usual, como son los espacios con dimensión infinita. Asimismo, con las herramientas que hemos desarrollado hasta ahora, podremos aprender nuevos conceptos como transformaciones lineales, eigenvectores y eigenvalores; estos nos permitirán comprender de manera más íntima los espacios vectoriales, y podremos relacionarlos unos con otros.

Tarea moral

  1. Verifica lo siguiente:
    • $(1,1,1,1)$, $(2,2,2,2)$, $(1,1,2,2)$, $(2,2,1,1)$ no es un conjunto linealmente independiente de $\mathbb{R}^4$.
    • $(1,2,3,4)$, $(2,3,4,1)$, $(3,4,1,2)$, $(4,1,2,3)$ es un conjunto generador de $\mathbb{R}^4$.
    • $(1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,0),(1,1,0,0,0),(1,0,0,0,0)$ es una base de $\mathbb{R}^5$.
  2. Demuestra las siguientes dos cosas:
    • Sea $S$ un conjunto generador de $\mathbb{R}^n$ y $T\supseteq S$. Entonces $T$ es conjunto generador de $\mathbb{R}^n$.
    • Sea $T$ un conjunto linealmente independiente de $\mathbb{R}^n$ y $S\subseteq T$. Entonces $S$ es un conjunto linealmente independiente de $\mathbb{R}^n$.
  3. Sean $v_1,v_2,v_3,\ldots,v_k$ vectores linealmente independientes de $\mathbb{R}^n$. Demuestra que $v_1, v_1+v_2, v_1+v_2+v_3,\ldots,v_1+v_2+v_3+\ldots+v_k$ son también vectores linealmente independientes de $\mathbb{R}^n$. ¿Es esto un si y sólo si?
  4. En vista de lo que hemos platicado para matrices de $2\times 2$, $3\times 3$, $\mathbb{R}^2$ y $\mathbb{R}^3$, ¿cómo definirías el producto matriz-vector $AX$ donde $A$ es una matriz de $m\times n$ y $X$ un vector en $\mathbb{R}^n$?
  5. Demuestra que la definición de base tal y como está en la entrada en efecto permite no sólo escribir a cada vector $v$ del espacio como combinación lineal de los elementos de una base $v_1,\ldots,v_n$, sino que también implica que dicha expresión será única.

Entradas relacionadas

Probabilidad I: Independencia de Eventos

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior introdujimos un nuevo concepto: la probabilidad condicional. Vimos que dada una medida de probabilidad $\mathbb{P}$, para un evento $A$ tal que $\Prob{A} > 0$, podemos calcular la probabilidad de que ocurra otro evento $B$ condicionado a que ya ocurrió $A$. Este concepto es importante, pues también habrá veces en las que la probabilidad condicional $\Prob{B \mid A}$ es la única que se conoce.

Por otro lado, hay algo que también nos debe de interesar. Para dos eventos $A$, $B$ tales que $\Prob{A} > 0$, ¿será siempre cierto que condicionar a que $A$ ya ocurrió cambia la probabilidad de $B$? Es decir, ¿siempre es cierto que $\Prob{B} \neq \Prob{B \mid A}$? La respuesta es que no. Al definir eventos, encontraremos casos en los que la probabilidad de uno no afecta la del otro. Esta propiedad es conocida como independencia de eventos. En esta entrada veremos la definición de independencia de $2$ eventos. Después, veremos cómo se extiende para $3$ o más eventos, pues no es inmediato deducirla a partir de la independencia de $2$ eventos.

Independencia de dos eventos

Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Dados dos eventos $A$ y $B$, es posible que al condicionar a que $A$ ya ocurrió, la probabilidad de $B$ no cambie. Esto es, que $\Prob{B} = \Prob{B \mid A}$. De manera intuitiva, esto quiere decir que la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$ (y viceversa). Esta propiedad es conocida como independencia, y se define a continuación:


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Diremos que dos eventos $A$ y $B$ son independientes si se cumple que

\[ \Prob{A \cap B} = \Prob{A} \Prob{B}. \]


Una consecuencia inmediata de la definición anterior es que si $A$ y $B$ son eventos independientes, entonces $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$ siempre que $\Prob{A} > 0$ y $\Prob{B} > 0$.

Comentamos que cuando $A$ y $B$ son independientes, la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$. Por ejemplo, supón que $A$ y $B$ son eventos independientes tales que $\Prob{A} = 0.2$ y $\Prob{B} = 0.4$. Si realizaras el experimento aleatorio correspondiente muchas veces, se espera que en $20\%$ de esas realizaciones ocurra $A$, y en un $40\%$ ocurra $B$. Al ser independientes, de aquellas realizaciones en las que ocurrió $A$, $B$ ocurriría en un $40\%$ de ellas, pues su probabilidad no se ve afectada por la ocurrencia de $A$ (recuerda, son independientes). Así, $\Prob{A}\Prob{B} = (0.2)(0.4) = 0.08$, y en consecuencia, $\Prob{B \mid A} = \frac{0.08}{0.2} = 0.4$, que es precisamente $\Prob{B}$.

Ejemplo. Supón que realizas $3$ lanzamientos de moneda de manera equiprobable. Es decir, si $\mathrm{A}$ representa a «águila» y $\mathrm{S}$ representa a «sol», tenemos el siguiente espacio muestral equiprobable $\Omega$:

\[ \Omega = \begin{Bmatrix} \mathrm{(A, A, A)}, & \mathrm{(A, A, S)}, & \mathrm{(A, S, A)}, & \mathrm{(S, A, A)}, \\ \mathrm{(A, S, S)}, & \mathrm{(S, A, S)}, & \mathrm{(S, S, A)}, & \mathrm{(S, S, S)} \end{Bmatrix}, \]

donde cada resultado tiene probabilidad de ocurrencia de $\frac{1}{|\Omega|} = \frac{1}{8}$. Podemos acordar la siguiente convención para los distintos resultados de $\Omega$:

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

simplificando un poco la escritura de los eventos que veremos a continuación. Sean $A$, $B$ y $C$ los siguientes eventos:

  • $A$: El primer lanzamiento es águila. En consecuencia, $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$. Además, $\Prob{A} = \frac{4}{8} = \frac{1}{2}$.
  • $B$: El segundo lanzamiento es águila. Así, $B = \{ \mathrm{AAA, AAS, SAA, SAS} \}$. También se tiene que $\Prob{B} = \frac{1}{2}$.
  • $C$: Hay al menos dos águilas. Esto es, $C = \{ \mathrm{AAA, AAS, ASA, SAA} \}$. A su vez, se tiene que $\Prob{C} = \frac{1}{2}$.

Las probabilidades de cada evento se obtuvieron considerando que el espacio muestral es equiprobable.

  1. Se tiene que $A \cap B = \{ \mathrm{AAA, AAS} \}$, por lo que \[ \Prob{A \cap B} = \frac{2}{8} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B}. \]En consecuencia, se puede concluir que $A$ y $B$ son independientes.
  2. Por otro lado, $A \cap C = \{ \mathrm{AAA, AAS, ASA } \}$. Así, tenemos que \[ \Prob{A \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{C}.\]Como se tiene que $\Prob{A \cap C} \neq \Prob{A}\Prob{C}$, $A$ y $C$ no son independientes.
  3. De manera similar, $B \cap C = \{ \mathrm{AAA, AAS, SAA } \}$, por lo que \[ \Prob{B \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{B}\Prob{C},\]y se concluye que $B$ y $C$ no son independientes.

Observa que los resultados en 2 y 3 tienen sentido con nuestra noción intuitiva de independencia y probabilidad condicional. Por ejemplo, si queremos la probabilidad condicional de $A$ dado $C$, $\Prob{A \mid C}$, obtenemos que esta es

\[ \Prob{A \mid C} = \frac{\Prob{A \cap C}}{\Prob{C}} = \frac{\frac{3}{8}}{\frac{1}{2}} = \frac{3}{4}, \]

que tiene sentido, pues $3$ de los $4$ resultados en $C$ cumplen lo que establece el evento $A$, «que el primer lanzamiento sea águila». Esto exhibe que condicionar a que $C$ ya ocurrió cambia la probabilidad de ocurrencia de $A$, poniendo en evidencia que no son independientes.

El evento $B^{\mathsf{c}} = \{ \mathrm{SSS, SSA, ASS, ASA} \}$ es tal que $\Prob{B^{\mathsf{c}}} = \frac{1}{2}$. Además, se tiene que $A \cap B^{\mathsf{c}} = \{ \mathrm{ASS, ASA} \}$, por lo que

\[ \Prob{A \cap B^{\mathsf{c}}} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B^{\mathsf{c}}}. \]

Esto nos lleva a concluir que no sólo los eventos $A$ y $B$ son independientes: $A$ y $B^{\mathsf{c}}$ también lo son.


La última parte de este ejemplo revela una propiedad de la independencia de eventos que enunciamos a continuación.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sean $A$ y $B \in \mathscr{F}$ eventos. Si $A$ y $B$ son independientes, entonces:

  1. $A$ y $B^{\mathsf{c}}$ son independientes,
  2. $A^{\mathsf{c}}$ y $B$ son independientes,
  3. $A^{\mathsf{c}}$ y $B^{\mathsf{c}}$ son independientes.

Este último teorema corresponde a la idea de que cuando dos eventos son indepenedientes, la no-ocurrencia de un evento no afecta la probabilidad de que ocurra (o no ocurra) el otro.

Independencia de tres eventos

La definición de independencia puede extenderse a más de dos eventos. Sin embargo, esta extensión se debe de hacer de manera delicada. Si tenemos $3$ eventos $A$, $B$ y $C$, ¿cómo podríamos decir que estos $3$ eventos son independientes? Claramente, queremos preservar esa noción de que la ocurrencia o no ocurrencia de uno o más de estos eventos no afecta la probabilidad de ocurrencia de los restantes.

Más concretamente, esto quiere decir que si $A$, $B$ y $C$ son independientes, entonces la ocurrencia o no ocurrencia de $A$ no debería de afectar la probabilidad de ocurrencia de $B$, ni la de $C$. Similarmente, la ocurrencia de $B$ no debería de afectar la probabilidad de $A$, ni la de $C$; y tampoco la ocurrencia de $C$ debería de afectar la probabilidad de $A$, ni la de $B$.

Además, también deberíamos de pedir que la ocurrencia de $A$ y de $B$ (al mismo tiempo) no debe de afectar la probabilidad de que ocurra $C$. Del mismo modo, la ocurrencia de $A$ y $C$ no debe de afectar la probabilidad de $B$; ni la ocurrencia de $B$ y $C$ debe de afectar la probabilidad de $A$.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Sean $A$, $B$ y $C$ eventos. Diermos que $A$, $B$ y $C$ son independientes si

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$.
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$.
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$.
  4. $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$.

Las propiedades 1 a 3 corresponden a la independencia dos a dos que queremos entre los eventos. Además, en conjunto con la propiedad 4 de esta definición, capturan la idea de que la ocurrencia de dos de los eventos no debería de afectar la probabilidad del evento restante. Si $A$, $B$ y $C$ son eventos independientes, entonces

\[ \Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C} = \Prob{B} \Prob{A} \Prob{C}, \]

y como $\Prob{A \cap C} = \Prob{A} \Prob{C}$, entonces se tiene que

\[ \Prob{A \cap B \cap C} = \Prob{B} \Prob{A \cap C}, \]

que justamente corresponde a que la ocurrencia de $A$ y $C$ no afecta la probabilidad de $B$. Lo mismo puede hacerse análogamente para el resto de combinaciones de eventos posibles.

En apariencia, la definición de independencia para $3$ eventos parece un poco excesiva. ¿No será posible deducir las propiedades 1, 2 y 3 a partir de la 4? ¿O quizás deducir la propiedad 4 a partir de las primeras 3? Veamos un par de ejemplos para ver que no es el caso.

Ejemplo. Considera nuevamente el experimento de lanzar una moneda $3$ veces de manera equiprobable. El espacio muestral $\Omega$ de este experimento es

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

donde $\mathrm{A}$ es «águila» y $\mathrm{S}$ es «sol». Considera los siguientes $2$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila»: $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$.
  2. $B$ el evento de que los primeros dos lanzamientos son «águilas», o los últimos dos lanzamientos son «soles». Esto es, $B = \{ \mathrm{AAA, AAS, ASS, SSS} \}$.

Puede observarse intuitivamente que los dos eventos no son independientes, pues ambos dependen del resultado del primer lanzamiento. Formalmente, basta con demostrar que no cumplen la definición de independencia. Para ello, nota que $A \cap B = \{ \mathrm{AAA, AAS, ASS} \}$, por lo que

\[ \Prob{A \cap B} = \frac{|A \cap B|}{|\Omega|} = \frac{3}{8}. \]

Por otro lado, se tiene que $\Prob{A} = \frac{1}{2}$ y $\Prob{B} = \frac{1}{2}$, así que

\[ \Prob{A} \Prob{B} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \frac{1}{4}. \]

En conclusión, tenemos que $\Prob{A \cap B} \neq \Prob{A} \Prob{B}$, y en consecuencia, $A$ y $B$ no son independientes.

Ahora, consideremos un tercer evento:

  1. $C$ el evento de que los últimos dos lanzamientos son distintos. En este caso, se tiene que el evento es $C = \{ \mathrm{AAS, ASA, SAS, SSA} \}$.

Para $C$, tenemos que $\Prob{C} = \frac{1}{2}$. Además, tenemos que $A \cap B \cap C = \{ \mathrm{AAS} \}$, por lo que

\[ \Prob{A \cap B \cap C} = \frac{1}{8} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B} \Prob{C}, \]

así que $A$, $B$ y $C$ cumplen la propiedad 4 de la definición de independencia de $3$ eventos, a pesar de que no cumplen la propiedad 1. Esto quiere decir que cuando tú te encuentres con tres eventos $A$, $B$ y $C$ tales que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, no se puede deducir que son independientes dos a dos, ¡también tienes que comprobarlo para determinar si son independientes!


Ejemplo. Bueno, ¿y qué hay de la interacción opuesta? Si $A$, $B$ y $C$ son eventos tales que

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$,
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$,
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$,

¿es eso suficiente para concluir que son independientes? Es decir, ¿de ahí podemos deducir que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$? La respuesta es que no. Considera el experimento de lanzar una moneda $4$ veces de manera equiprobable. En este caso, podemos escribir al espacio muestral $\Omega$ como sigue.

\[ \Omega = \begin{Bmatrix} \mathrm{AAAA}, & \mathrm{AAAS}, & \mathrm{AASA}, & \mathrm{ASAA}, \\ \mathrm{SAAA}, & \mathrm{AASS}, & \mathrm{ASAS}, & \mathrm{SAAS}, \\ \mathrm{ASSA}, & \mathrm{SASA}, & \mathrm{SSAA}, & \mathrm{SSSA}, \\ \mathrm{SSAS}, & \mathrm{SASS}, & \mathrm{ASSS}, & \mathrm{SSSS} \end{Bmatrix}. \]

Considera los siguientes $3$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila». Esto es, \[ A = \{ \mathrm{AAAA, AAAS, AASA, ASAA, AASS, ASAS, ASSA, ASSS}\}. \]
  2. $B$ el evento de que el último lanzamiento es «águila». Es decir,\[ B = \{ \mathrm{AAAA, AASA, ASAA, SAAA, ASSA, SASA, SSAA, SSSA} \}. \]
  3. $C$ el evento de que los cuatro lanzamientos resulten en $2$ «águilas» y $2$ «soles». Así,\[ C = \{ \mathrm{AASS, ASAS, SAAS, SASA, ASSA, SSAA} \}. \]

En consecuencia, encontramos que $\Prob{A} = \frac{8}{16} = \frac{1}{2}$, $\Prob{B} = \frac{8}{16} = \frac{1}{2}$, y $\Prob{C} = \frac{6}{16} = \frac{3}{8}$.

Al tomar las intersecciones de estos $3$ eventos, obtenemos lo siguiente:

  • $A \cap B = \{ \mathrm{AAAA, AASA, ASAA, ASSA} \}$, por lo que \[ \Prob{A \cap B} = \frac{4}{16} = \frac{1}{4} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B}, \]y en consecuencia, $A$ y $B$ son independientes.
  • $A \cap C = \{ \mathrm{AASS, ASAS, ASSA} \}$, y por lo tanto, \[ \Prob{A \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{C}, \]así que $A$ y $C$ son independientes.
  • $B \cap C = \{ \mathrm{SASA, ASSA, SSAA} \}$, y así, \[ \Prob{B \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{B} \Prob{C}, \]de donde se concluye que $B$ y $C$ son independientes.

No obstante, nota que $A \cap B \cap C = \{ \mathrm{ASSA} \}$. Por ello, se tiene que

\[ \Prob{A \cap B \cap C} = \frac{1}{16} \neq \frac{3}{32} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{B} \Prob{C}. \]

Por lo tanto, $\Prob{A \cap B \cap C} \neq \Prob{A} \Prob{B} \Prob{C}$, así que $A$, $B$ y $C$ no son independientes. Este ejemplo exhibe que aún cuando tengas tres eventos $A$, $B$ y $C$ independientes dos a dos, esto no asegura que se cumple que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, ¡debes de comprobarlo para concluir que los $3$ eventos son independientes!


Independencia de más de 3 eventos

La definición de independencia puede generalizarse para $n \in \mathbb{N}^{+}$ eventos. La idea de la definición será la misma que usamos para definir la independencia de $3$ eventos, pero extendida a todas las combinaciones de tamaño $k$ posibles, con $2 \leq k \leq n$. Presentamos esta definición a continuación.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $n \in \mathbb{N}^{+}$ tal que $n \geq 2$. Sean $A_{1}$, $A_{2}$, …, $A_{n}$ eventos. Diremos que son independientes si y sólamente si para toda colección finita $\{i_{1}, \ldots, i_{k}\}$ de índices distintos en $\{1,\ldots,n\}$ se cumple que

\[ \Prob{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \cdots \Prob{A_{i_{k}}}. \]


La definición anterior puede apantallar un poco, pero observa que lo que significa es que se tiene una lista de propiedades que debe de cumplir la familia $A_{1}$, $A_{2}$, …, $A_{n}$ para poder decir que son independientes. De manera más explícita, estas serían:

  • $\Prob{A_{i_{1}} \cap A_{i_{2}}} = \Prob{A_{i_{1}}}\Prob{A_{i_{2}}}$ para cada $i_{1}$, $i_{2} \in \{1,\ldots,n\}$ tales que $i_{1} \neq i_{2}$.
  • $\Prob{A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \Prob{A_{i_{3}}}$ para cada $i_{1}$, $i_{2}$, $i_{3} \in \{1,\ldots, n\}$ tales que $i_{1} \neq i_{2} \neq i_{3}$.

$\vdots$

  • $\Prob{A_{1} \cap A_{2} \cap \cdots \cap A_{n}} = \Prob{A_{1}}\Prob{A_{2}} \cdots \Prob{A_{n}}$.

Es decir, para verificar que $n$ eventos son independientes, hay que checar que la probabilidad «abre» la intersección como un producto primero con todas las combinaciones de eventos dos a dos, luego tres a tres, y así sucesivamente hasta llegar a la propiedad con todos los eventos.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Sean $A$ y $B$ eventos tales que $\Prob{A} > 0$ y $\Prob{B} > 0$. Demuestra que si $A$ y $B$ son independientes, entonces se cumple que $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$.
  2. Demuestra que para cualesquiera $A$, $B$ eventos, si $A$ y $B$ son independientes, entonces $A^{\mathsf{c}}$ y $B$ son independientes.
  3. A partir de la definición de independencia de $n$ eventos, escribe las propiedades que deben de cumplir $4$ eventos $A$, $B$, $C$ y $D$ para ser llamados independientes. Sugerencia: Primero revisa cómo se llega a la definición para $3$ eventos a partir de la de $n$ eventos.

Más adelante…

La independencia de eventos es un concepto importantísimo en la probabilidad, pues en muchos ejercicios y aplicaciones, se hacen supuestos de independencia. A pesar de que demostrar que $n$ conjuntos son independientes puede resultar complicado, cuando asumes la independencia, tienes una gran cantidad de propiedades a tu disposición. Por ello, en muchos teoremas básicos, la independencia se toma como hipótesis.

Más adelante, cuando veamos el concepto de variable aleatoria, veremos lo que significa que dos variables aleatorias sean independientes, y será necesario utilizar las definiciones que hemos visto aquí.

El siguiente tema que abordaremos son dos fórmulas para el cálculo de probabilidades muy útiles y que se basan en la probabilidad condicional: el teorema de probabilidad total y el teorema de Bayes.

Entradas relacionadas

Probabilidad I: Probabilidad Condicional

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior concluimos nuestro estudio de algunos de los enfoques más importantes en la historia de la probabilidad. Más aún, vimos que podemos plasmar estos enfoques en medidas de probabilidad específicas. Sin embargo, estas no son las únicas medidas de probabilidad que existen, ¡hay muchísimas más!

Pasaremos ahora a otro asunto. Dada una medida de probabilidad $\mathbb{P}$, construiremos un nuevo concepto llamado probabilidad condicional. A grandes rasgos, lo que queremos hacer es medir la probabilidad de un evento $B$ condicionando a que otro evento $A$ ya ocurrió. En esencia, lo que queremos es una medida que nos permita capturar el efecto que tiene la información de $A$ sobre la probabilidad de $B$. Sin más preámbulos, veamos cómo lo haremos.

Motivación de la probabilidad condicional

Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad cualquiera, y $A \in \mathscr{F}$ un evento de $\Omega$. Ahora, a partir de $\mathbb{P}$, ¿cómo podríamos construir una medida que exprese la probabilidad de que ocurra un evento $B$ condicionando a que $A$ ya ocurrió?

Para atacar este problema, sea $B \in \mathscr{F}$ un evento cualquiera. Recordando que el evento $B \cap A$ es aquel en donde ocurren $B$ y $A$, así que $\Prob{B \cap A}$ es la probabilidad de que ocurran $B$ y $A$. Sin embargo, esta probabilidad de ocurrencia se calcula con respecto a todos los resultados en $\Omega$, no sólamente sobre aquellos eventos en los que ocurre $A$. Por ejemplo, si los eventos $B$ y $A$ son tales que $\Prob{B \cap A} = 0.1$ y $\Prob{A} = 0.4$, se espera que si observas el fenómeno aleatorio muchas veces, en un $40\%$ de los resultados ocurrirá $A$ y en $10\%$ ocurrirá $B$ y $A$. No obstante, al fijarnos únicamente en aquellos resultados en los que ocurrió $A$, aproximadamente el $\frac{0.1}{0.4} = 0.25 = 25\%$ de ellos corresponde a resultados en los que también ocurrió $B$.

Por ello, es necesario «reescalar» la expresión $\Prob{B \cap A}$ para que efectivamente represente la probabilidad de que ocurra $B$ dado que ya ocurrió $A$, donde $0$ es lo más improbable y $1$ es lo más probable. El reescalamiento se hace con respecto a $A$, que es el conjunto que asumimos que ya ocurrió. Para hacerlo, tomamos el cociente $\frac{\Prob{B \cap A}}{\Prob{A}}$, que captura la idea de restringirnos a los resultados en los que ya ocurrió $A$.

Definición de la probabilidad condicional

Tomando en cuenta la motivación de la sección anterior, se define la probabilidad condicional como sigue.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Sea $A \in \mathscr{F}$ un evento tal que $\Prob{A} > 0$. Para cada $B \in \mathscr{F}$ se define $\Prob{B \mid A}$, la probabilidad condicional de $B$ dado $A$, como

\[ \Prob{B \mid A} = \frac{\Prob{B \cap A}}{\Prob{A}}. \]


En la probabilidad condicional, el conjunto $A$ se interpreta como información conocida. Es decir, imagina que tienes ante tí un fenómeno aleatorio con espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$, y un evento $A \in \mathscr{F}$. Entonces, si ya ocurrió $A$, ¿cómo se ve afectada la probabilidad de algún evento $B$ tomando en cuenta esa información? La respuesta a esa pregunta la obtenemos con la probabilidad condicional de $B$ dado $A$.

Es posible dar una definición para la probabilidad condicional dado un evento de probabilidad $0$. Es decir, puede definirse cuando $\Prob{A} = 0$. Sin embargo, no contamos con las herramientas matemáticas suficientes para hacerlo. No obstante, ¿tiene sentido hacer semejante barbaridad? ¡Resulta que sí! Aún cuando la probabilidad de un evento es $0$, esto no significa que sea imposible que ocurra. Recuerda, cuando un evento tiene probabilidad $0$, quiere decir que su ocurrencia es lo más improbable posible. Aún así, esto no significa «imposible» en todos los casos. Más adelante veremos casos en los que surgen eventos de probabilidad $0$ que sí podrían ocurrir, de manera muy natural.

Una consecuencia inmediata de la definición anterior es que para cualesquiera eventos $A$, $B$ tales que $\Prob{A}$, $\Prob{B} > 0$ se cumple que

\[ \Prob{B \cap A} = \Prob{B \mid A} \Prob{A}, \]

y que

\[ \Prob{A \cap B} = \Prob{A \mid B} \Prob{B}, \]

Y como $\Prob{A \cap B} = \Prob{B \cap A}$ (pues $A \cap B$ y $B \cap A$ son el mismo evento), se tiene que

  • $\Prob{A \cap B} = \Prob{A \mid B} \Prob{B}$, y
  • $\Prob{A \cap B} = \Prob{B \mid A} \Prob{A}$.

Este resultado es conocido como la regla multiplicativa.

Ejemplos

Ejemplo. Recordemos que en una baraja estándar de $52$ cartas hay $12$ cartas con ilustración: hay $4$ jotas, reinas y reyes. Imagina que un amigo tuyo revuelve la baraja y tú tomas una carta. Le muestras la carta a tu amigo, y éste te comenta que la carta es un as o una carta con ilustración. ¿Cuál es la probabilidad de que tu carta sea un rey sabiendo esa información?

En primera, $\Omega$ es el conjunto de todas las cartas de una baraja estándar, por lo que $|\Omega| = 52$. Tenemos dos eventos que nos interesan:

  • $A$: el evento de que la carta extraída sea un rey. En consecuencia, se tiene que \[ A = \{ \mathrm{\textcolor{red}{K\heartsuit}, \textcolor{red}{K\blacklozenge}, K\spadesuit, K\clubsuit}\}. \]
  • $B$: el evento de que la carta extraída sea un as o una carta con ilustración. Es decir, $B$ es el evento \[ B = \begin{Bmatrix} \textcolor{red}{\mathrm{A\heartsuit}}, & \textcolor{red}{\mathrm{A\blacklozenge}}, & \mathrm{A\spadesuit}, & \mathrm{A\clubsuit}, \\ \textcolor{red}{\mathrm{J\heartsuit}}, & \textcolor{red}{\mathrm{J\blacklozenge}}, & \mathrm{J\spadesuit}, & \mathrm{J\clubsuit}, \\ \textcolor{red}{\mathrm{Q\heartsuit}}, & \textcolor{red}{\mathrm{Q\blacklozenge}}, & \mathrm{Q\spadesuit}, & \mathrm{Q\clubsuit}, \\ \textcolor{red}{\mathrm{K\heartsuit}}, & \textcolor{red}{\mathrm{K\blacklozenge}}, & \mathrm{K\spadesuit}, & \mathrm{K\clubsuit} \end{Bmatrix}. \]

En términos de estos eventos, lo que queremos saber es $\Prob{A \mid B}$. Entonces necesitaremos la probabilidad de $A \cap B$. Por ello, observa que $A \cap B = \{ \mathrm{\textcolor{red}{K\heartsuit}, \textcolor{red}{K\blacklozenge}, K\spadesuit, K\clubsuit } \}$. Además, como se trata de un ejemplo de conteo, asumiremos que se toma la carta de manera equiprobable. Así, se tiene que

\[ \Prob{A \cap B} = \frac{|A \cap B|}{|\Omega|} = \frac{4}{52} = \frac{1}{13},\]

\[ \Prob{B} = \frac{|B|}{|\Omega|} = \frac{16}{52} = \frac{4}{13}.\]

Por lo tanto,

\[ \Prob{A \mid B} = \frac{\Prob{A \cap B}}{\Prob{B}} = \frac{\frac{1}{13}}{\frac{4}{13}} = \frac{1}{4}. \]

En conclusión, la probabilidad de que la carta obtenida sea un rey sabiendo que es un as o una carta con ilustración es $\Prob{A \mid B} = 0.25$.


También habrá ocasiones en las que la probabilidad condicional ya es conocida, y se puede utilizar para el cálculo de otras probabilidades.

Ejemplo. En el refrigerador de una casa hay $8$ latas de refresco y $4$ latas de cerveza. Una persona decide agarrar, sin mirar, una lata para su amiga. Después, vuelve a meter la mano al refrigerador, sin mirar, para tomar una lata para ella misma. Definimos los siguientes eventos:

  • $A$: La primera selección es una lata de refresco.
  • $B$: La segunda selección es una lata de refresco.

Podemos utilizar la regla multiplicativa para determinar la probabilidad de que las dos latas elegidas son de refresco. Esto corresponde al evento $A \cap B$, y por la regla multiplicativa:

\[ \Prob{A \cap B} = \Prob{A} \Prob{B \mid A}. \]

Ahora, suponiendo equiprobabilidad, $\Prob{A} = \frac{8}{12} = \frac{2}{3}$, pues hay $8$ latas de refresco y $12$ latas en total. ¿Es posible saber $\Prob{B \mid A}$? ¡Sí! Pues cuando ya se observó $A$, quedan $7$ latas de refresco y $11$ latas en total, así que $\Prob{B \mid A} = \frac{7}{11}$. De este modo, tenemos que

\[ \Prob{A \cap B} = {\left( \frac{2}{3} \right)}{\left( \frac{7}{11} \right)} = \frac{14}{33}. \]

Del mismo modo, podemos obtener la probabilidad de que las dos latas sean de cerveza. Para ello, observa que el evento de que ambas latas sean de cerveza es $A^{\mathsf{c}} \cap B^{\mathsf{c}}$. Así,

\[ \Prob{A^{\mathsf{c}} \cap B^{\mathsf{c}}} = \Prob{A^{\mathsf{c}}} \Prob{B^{\mathsf{c}} \mid A^{\mathsf{c}}}. \]

Observa que $\Prob{A^{\mathsf{c}}} = \frac{4}{12} = \frac{1}{3}$, y que $\Prob{B^{\mathsf{c}} \mid A^{\mathsf{c}}} = \frac{3}{11}$, similar al caso anterior. Por ello, tenemos que

\[ \Prob{A^{\mathsf{c}} \cap B^{\mathsf{c}}} = {\left( \frac{1}{3} \right)}{\left( \frac{3}{11} \right)} = \frac{1}{11}. \]

La probabilidad condicional también puede resultar útil para el cálculo de la probabilidad de un evento. Por ejemplo, ¿cuál será la probabilidad de $B$? Podemos auxiliarnos de la aditividad de una medida de probabilidad, pero para ello debemos de partir a $B$ en pedazos ajenos. Para hacerlo, observa que $B = B \cap \Omega$, sea cual sea el espacio muestral $\Omega$, pues $B \subseteq \Omega$. Además, $\Omega = A \cup A^{\mathsf{c}}$, por lo que

\[ B = B \cap \Omega = B \cap (A \cup A^{\mathsf{c}}) = (B \cap A) \cup (B \cap A^{\mathsf{c}}). \]

Nota que los eventos $B \cap A$ y $B \cap A^{\mathsf{c}}$ son ajenos, por lo que

\[ \Prob{B} = \Prob{ (B \cap A) \cup (B \cap A^{\mathsf{c}}) } = \Prob{B \cap A} + \Prob{B \cap A^{\mathsf{c}}}, \]

y por la regla multiplicativa, obtenemos que

\begin{align*} \Prob{B} &= \Prob{A}\Prob{B \mid A} + \Prob{A^{\mathsf{c}}} \Prob{B \mid A^{\mathsf{c}}} \\ &= {\left( \frac{2}{3} \right)}{\left( \frac{7}{11} \right)} + {\left( \frac{1}{3} \right)}{\left( \frac{8}{11} \right)} \\ &= \frac{14}{33} + \frac{8}{33} \\ &= \frac{22}{33} \\ &= \frac{2}{3}. \end{align*}


El resultado que usamos al final del último ejemplo es muy importante, y es comocido como el teorema de probabilidad total. Lo veremos propiamente (y de manera más general) en una sección posterior.

Ejemplo. Considera el experimento de lanzar un dado $2$ veces consecutivas. En este caso, el espacio muestral $\Omega$ puede verse como

\[ \Omega = \{1,2,3,4,5,6\}^{2} = \begin{Bmatrix} (1,1), & (1,2), & (1,3), & (1,4), & (1,5), & (1,6), \\ (2,1), & (2,2), & (2,3), & (2,4), & (2,5), & (2,6), \\ (3,1), & (3,2), & (3,3), & (3,4), & (3,5), & (3,6), \\ (4,1), & (4,2), & (4,3), & (4,4), & (4,5), & (4,6), \\ (5,1), & (5,2), & (5,3), & (5,4), & (5,5), & (5,6), \\ (6,1), & (6,2), & (6,3), & (6,4), & (6,5), & (6,6) \end{Bmatrix} \]

donde la primera entrada de cada par ordenado es el resultado del primer lanzamiento y la segunda entrada es el resultado del segundo lanzamiento. ¿Cuál será la probabilidad de que la suma de los dos resultados sea mayor a $6$ dado que en el primer lanzamiento se obtuvo un $3$?

Considera los siguientes eventos:

  • $A$: el evento de que el primer lanzamiento sea un $3$. Esto quiere decir que\[ A = \{ (3,1), (3,2), (3,3), (3,4), (3,5), (3,6) \}. \]
  • $B$: el evento de que la suma de ambos resultados sea mayor a $6$. Primero, podemos escribir a $B$ como\[ B = \{ (x,y) \in \Omega \mid x + y > 6 \}. \] Explícitamente, los elementos de $B$ son\[ B = \begin{Bmatrix} (1,6), & (2,5), & (2,6), & (3,4), & (3,5), & (3,6), & (4,3), \\ (4,4), & (4,5), & (4,6), & (5,2), & (5,3), & (5,4), & (5,5), \\ (5,6), & (6,1), & (6,2), & (6,3), & (6,4), & (6,5), & (6,6) \end{Bmatrix},\]que son precisamente todos los pares ordenados en $\Omega$ cuyas entradas suman más de $6$.

Así, la probabilidad que queremos obtener es $\Prob{B \mid A}$. En este ejemplo no hemos especificado una medida de probabilidad, así que asumiremos equiprobabilidad. Por ello, el cálculo de \(\Prob{A}\) y \(\Prob{B}\) es muy sencillo en este caso. Para \(A\) tenemos que

\begin{align*} \Prob{A} &= \frac{|A|}{|\Omega|} = \frac{6}{36} = \frac{1}{6}. \end{align*}

Por otro lado, para \(B\) se tiene que

\begin{align*} \Prob{B} &= \frac{|B|}{|\Omega|} = \frac{21}{36} =\frac{7}{12}. \end{align*}

Además, para calcular \(\Prob{B \mid A}\) necesitamos \(\Prob{A \cap B}\). Realizando esta intersección obtenemos que \(A \cap B\) es

\begin{align*} A \cap B &= \{(3,4), (3,5), (3,6) \}, \end{align*}

por lo que \(\Prob{A \cap B} = \frac{3}{36} = \frac{1}{12}\). En consecuencia, tenemos que

\begin{align*} \Prob{B \mid A} &= \frac{\Prob{A \cap B}}{\Prob{B}} = \frac{\frac{1}{12}}{\frac{1}{6}} = \frac{6}{12} = \frac{1}{2}. \end{align*}

Es decir, la probabilidad de que la suma de los dos resultados sea mayor a \(6\) sabiendo que el primer lanzamiento fue un \(3\) es de \(0.5\). En contraste, la probabilidad (sin condicionar) de que la suma de los dos resultados sea mayor a \(6\) es \(\frac{7}{12} = 0.5833\ldots\)


Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $A \in \mathscr{F}$ un evento tal que $\Prob{A} > 0$. Demuestra que la probabilidad condicional dado $A$ es una medida de probabilidad. Es decir, demuestra que la función $\mathbb{P}_{A}\colon \mathscr{F} \rightarrow \RR$ dada por: \[ \mathbb{P}_{A}(B) = \Prob{B \mid A}, \]para cada $B \in \mathscr{F}$, es una medida de probabilidad. Sugerencia: Usa la definición de $\Prob{B \mid A}$ y aprovecha que $\mathbb{P}$ es una medida de probabilidad.
  2. Repite lo que hicimos en el ejemplo de las latas en el refrigerador, pero asumiendo que hay $7$ latas de refresco y $3$ latas de cerveza.
  3. En el ejemplo de lanzar un dado $2$ veces, obtén la probabilidad de que la suma de los dos resultados sea mayor a $7$ dado que en le primer lanzamiento se obtuvo $2$ o $3$.
  4. Dados dos eventos $A$, $B$ con $\Prob{A}$, $\Prob{B} > 0$, ¿siempre es cierto que $\Prob{A \mid B} = \Prob{B \mid A}$? Si crees sí, demuéstralo; si crees que no, exhibe un contraejemplo.

Más adelante…

La probabilidad condicional resulta una herramienta fundamental en la teoría de la probabilidad. Habrá ejemplos y ejercicios (y, por consiguiente, aplicaciones) en los que la información que se te da está en términos de condicionales. Más adelante veremos algunas fórmulas que permiten calcular la probabilidad de eventos haciendo uso de probabilidades condicionales.

En la siguiente entrada veremos un concepto que está cercanamente relacionado con la probabilidad condicional: la noción de independencia de eventos.

Entradas relacionadas

Probabilidad I-Videos: Independencia de eventos

Por Aurora Martínez Rivas

Introducción

La noción de independencia de los eventos juega un papel importante en la teoría de la probabilidad y sus aplicaciones.  Generalmente, saber que algún evento B ha ocurrido cambia la probabilidad de que otro evento A ocurra. Si la probabilidad permanece sin cambios entonces llamamos a A y B independientes.

Independencia de eventos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sean $A$ y $B$ eventos independientes, muestra que
    • $A^c,\ B$
    • $A,\ B^c$
    • $A^c,\ B^c$

Son independientes.

  • Demuestra que los eventos $A$ y $B$ son independientes si y sólo si $P\left(A\middle|\ B\right)=P\left(A\middle|\ B^c\right)$.
  • Sea $\Omega=${$1,2,\ldots,p$} donde $p$ es primo, $\mathcal{F}$ es el conjunto de todos los subconjuntos de $\Omega$ y para todo evento $A\in\mathcal{F}$, $P(A)=\frac{\left|A\right|}{p}$. Muestra que, si $A$ y $B$ son eventos independientes, entonces al menos uno de los eventos $A$ y $B$ son cualquiera $\emptyset$ o $\Omega$.
  • Considera que se lanza un dado n veces. Sea $A_{ij}$ el evento tal que el $i-ésimo$ y $j-ésimo$ resultado producen el mismo número. Muestra que los eventos {$A_{ij}:1\le\ i\le\ j\le\ n$} son independientes dos a dos, pero no son independientes.
  • Prueba que si $A_1,A_2,\ldots,A_n$ son eventos independientes entonces $P\left(A_1\cup A_2\cup\ldots\cup A_n\right)=1-\displaystyle\prod_{i=1}^{n}\left[1-P\left(A_i\right)\right]$.

Más adelante…

En los siguientes videos veremos dos aplicaciones útiles e importantes de la probabilidad condicional: el teorema de probabilidad total y el teorema de Bayes, que nos permiten a través de una partición correcta del espacio muestral, encontrar probabilidades de una manera conveniente.

Entradas relacionadas

Álgebra Lineal I: Problemas de combinaciones lineales, generadores e independientes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya hablamos de combinaciones lineales, de conjuntos generadores y de conjuntos independientes. Lo que haremos aquí es resolver problemas para reforzar el contenido de estos temas.

Problemas resueltos

Problema 1. Demuestra que el polinomio $p(x)=x^2+x+1$ no puede ser escrito en el espacio vectorial $\mathbb{R}[x]$ como una combinación lineal de los polinomios \begin{align*} p_1(x)=x^2-x\\ p_2(x) = x^2-1\\ p_3(x) = x-1.\end{align*}

Solución. Para resolver este problema, podemos plantearlo en términos de sistemas de ecuaciones. Supongamos que existen reales $a$, $b$ y $c$ tales que $$p(x)=ap_1(x)+bp_2(x)+cp_3(x).$$

Desarrollando la expresión, tendríamos que
\begin{align*}
x^2+x+1 &= a(x^2-x)+b(x^2-1)+c(x-1)\\
&= (a+b)x^2+(-a+c)x+(-b-c),
\end{align*}

de donde igualando coeficientes de términos del mismo grado, obtenemos el siguiente sistema de ecuaciones: $$\begin{cases}a+b & = 1\\ -a + c &= 1 \\ -b-c &= 1.\end{cases}$$

Para mostrar que este sistema de ecuaciones no tiene solución, le aplicaremos reducción gaussiana a la siguiente matriz extendida: $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_2+R_1$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_3+R_2$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

De aquí se ve que la forma escalonada reducida tendrá un pivote en la última columna. Por el teorema de existencia y unicidad el sistema original no tiene solución.

$\square$

En el problema anterior usamos un argumento de reducción gaussiana para mostrar que el sistema no tiene solución. Este es un método general que funciona en muchas ocasiones. Una solución más sencilla para ver que el sistema del problema no tiene solución es que al sumar las tres ecuaciones se obtiene $0=3$.

Problema 2. Sea $n$ un entero positivo. Sea $W$ el subconjunto de vectores en $\mathbb{R}^n$ cuya suma de entradas es igual a $0$. Sea $Z$ el espacio generado por el vector $(1,1,\ldots,1)$ de $\mathbb{R}^n$. Determina si es cierto que $$\mathbb{R}^n=W\oplus Z.$$

Solución. El espacio $Z$ está generado por todas las combinaciones lineales que se pueden hacer con el vector $v=(1,1,\ldots,1)$. Como sólo es un vector, las combinaciones lineales son de la forma $av$ con $a$ en $\mathbb{R}$, de modo que $Z$ es precisamente $$Z=\{(a,a,\ldots,a): a\in\mathbb{R}\}.$$

Para obtener la igualdad $$\mathbb{R}^n=W\oplus Z,$$ tienen que pasar las siguientes dos cosas (aquí estamos usando un resultado de la entrada de suma y suma directa de subespacios):

  • $W\cap Z = \{0\}$
  • $W+Z=\mathbb{R}^n$

Veamos qué sucede con un vector $v$ en $W\cap Z$. Como está en $Z$, debe ser de la forma $v=(a,a,\ldots,a)$. Como está en $W$, la suma de sus entradas debe ser igual a $0$. En otras palabras, $0=a+a+\ldots+a=na$. Como $n$ es un entero positivo, esta igualdad implica que $a=0$. De aquí obtenemos que $v=(0,0,\ldots,0)$, y por lo tanto $W\cap Z = \{0\}$.

Veamos ahora si se cumple la igualdad $\mathbb{R}^n=W+Z$. Por supuesto, se tiene que $W+Z\subseteq \mathbb{R}^n$, pues los elementos de $W$ y $Z$ son vectores en $\mathbb{R}^n$. Para que la igualdad $\mathbb{R}^n\subseteq W+Z$ se cumpla, tiene que pasar que cualquier vector $v=(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ se pueda escribir como suma de un vector $w$ uno con suma de entradas $0$ y un vector $z$ con todas sus entradas iguales. Veamos que esto siempre se puede hacer.

Para hacerlo, sea $S=x_1+\ldots+x_n$ la suma de las entradas del vector $v$. Consideremos al vector $w=\left(x_1-\frac{S}{n},\ldots, x_n-\frac{S}{n} \right)$ y al vector $z=\left(\frac{S}{n},\ldots,\frac{S}{n}\right)$.

Por un lado, $z$ está en $Z$, pues todas sus entradas son iguales. Por otro lado, la suma de las entradas de $w$ es
\begin{align*}
\left(x_1-\frac{S}{n}\right)+\ldots + \left(x_n-\frac{S}{n}\right)&=(x_1+\ldots+x_n)-n\cdot \frac{S}{n}\\ &= S-S=0,
\end{align*}

lo cual muestra que $w$ está en $W$. Finalmente, notemos que la igualdad $w+z=v$ se puede comprobar haciendo la suma entrada a entrada. Con esto mostramos que cualquier vector de $V$ es suma de vectores en $W$ y $Z$ y por lo tanto concluimos la igualdad $\mathbb{R}^n=W\oplus Z$.

$\square$

En el problema anterior puede parecer algo mágico la propuesta de vectores $w$ y $z$. ¿Qué es lo que motiva la elección de $\frac{S}{n}$? Una forma de enfrentar los problemas de este estilo es utilizar la heurística de trabajar hacia atrás. Sabemos que el vector $w$ debe tener todas sus entradas iguales a cierto número $a$ y queremos que $z=v-w$ tenga suma de entradas igual a $0$. La suma de las entradas de $v-w$ es $$(x_1-a)+\ldots+(x_n-a)= S -na.$$ La elección de $a=\frac{S}{n}$ está motivada en que queremos que esto sea cero.

Problema 3. Considera las siguientes tres matrices en $M_2(\mathbb{C})$:
\begin{align*}
A&= \begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix}\\
B&= \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix}\\
C&= \begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix}.
\end{align*}

Demuestra que $A$, $B$ y $C$ son matrices linealmente dependientes. Da una combinación lineal no trivial de ellas que sea igual a $0$.

Solución. Para mostrar que son linealmente dependientes, basta dar la combinación lineal no trivial buscada. Buscamos entonces $a,b,c$ números complejos no cero tales que $aA+bB+cC=O_2$, la matriz cero en $M_2(\mathbb{C})$. Para que se de esta igualdad, es necesario que suceda entrada a entrada. Tenemos entonces el siguiente sistema de ecuaciones:
$$\begin{cases}
-i a + 2i b + ic &= 0\\
-3a + b -7c &=0\\
2a + 3b + 12c &= 0\\
3a -b +7c &=0.
\end{cases}$$

En este sistema de ecuaciones tenemos números complejos, pero se resuelve exactamente de la misma manera que en el caso real. Para ello, llevamos la matriz correspondiente al sistema a su forma escalonada reducida. Comenzamos dividiendo el primer renglón por $-i$ y aplicando transvecciones para hacer el resto de las entradas de la columna iguales a $0$. Luego intercambiamos la tercera y cuarta filas.

\begin{align*}
&\begin{pmatrix}
-i & 2i & i \\
-3 & 1 & -7 \\
2 & 3 & 12 \\
3 & -1 & 7
\end{pmatrix}\\
\to&\begin{pmatrix}
1 & -2 & -1 \\
0 & -5 & -10 \\
0 & 7 & 14 \\
0 & 5 & 10
\end{pmatrix}
\end{align*}

Ahora reescalamos con factor $-\frac{1}{5}$ la segunda fila y hacemos transvecciones para hacer igual a cero el resto de entradas de la columna 2:

\begin{align*}
&\begin{pmatrix}
1 & 0& 3 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\end{align*}

Con esto llegamos a la forma escalonada reducida de la matriz. De acuerdo al procedimiento que discutimos en la entrada de sistemas lineales homogéneos, concluimos que las variables $a$ y $b$ son pivote y la variable $c$ es libre. Para poner a $a$ y $b$ en términos de $c$, usamos la primera y segunda ecuaciones. Nos queda \begin{align*} a &= -3c \\ b &= -2c. \end{align*}

En resumen, concluimos que para cualqueir número complejo $c$ en $\mathbb{C}$ se tiene la combinación lineal $$-3c\begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix} – 2c \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix} + c\begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Una posible combinación lineal no trivial se obtiene tomando $c=1$.

$\square$

En el problema anterior bastaba encontrar una combinación lineal no trivial para acabar el ejercicio. Por supuesto, esto también se puede hacer por prueba y error. Sin embargo, la solución que dimos da una manera sistemática de resolver problemas de este estilo.

Problema 4. Consideremos el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$. Para cada real $a$ en $(0,\infty)$, definimos a la función $f_a\in V$ dada por $$f_a(x)=e^{ax}.$$

Tomemos reales distintos $0<a_1<a_2<\ldots<a_n$. Supongamos que existe una combinación lineal de las funciones $f_{a_1},\ldots,f_{a_n}$ que es igual a $0$, es decir, que existen reales $\alpha_1,\ldots,\alpha_n$ tales que $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Muestra que $\alpha_1=\ldots=\alpha_n=0$. Concluye que la familia $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$.

Solución. Procedemos por inducción sobre $n$. Para $n=1$, si tenemos la igualdad $\alpha e^{ax}=0$ para toda $x$, entonces $\alpha=0$, pues $e^{ax}$ siempre es un número positivo. Supongamos ahora que sabemos el resultado para cada que elijamos $n-1$ reales cualesquiera. Probaremos el resultado para $n$ reales cualesquiera.

Supongamos que tenemos la combinación lineal $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Dividamos esta igualdad que tenemos entre $e^{a_nx}$:

$$\alpha_1 e^{(a_1-a_n)x} + \alpha_2e^{(a_2-a_n)x} + \ldots + \alpha_{n-1}e^{(a_{n-1}-a_n)x}+\alpha_n = 0.$$

¿Qué sucede cuando hacemos $x\to \infty$? Cada uno de los sumandos de la forma $\alpha_i e^{(a_i-a_n)x}$ se hace cero, pues $a_i<a_n$ y entonces el exponente es negativo y se va a $-\infty$. De esta forma, queda la igualdad $\alpha_n=0$. Así, nuestra combinación lineal se ve ahora de la forma $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_{n-1} e^{a_{n-1}x} = 0.$$

Por la hipótesis inductiva, $\alpha_1=\ldots=\alpha_{n-1}=0$. Como también ya demostramos $\alpha_n=0$, hemos terminado el paso inductivo.

Concluimos que la familia (infinita) $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$ pues cualquier subconjunto finito de ella es linealmente independiente.

$\square$

El problema anterior muestra que la razón por la cual ciertos objetos son linealmente independientes puede deberse a una propiedad analítica o de cálculo. A veces dependiendo del contexto en el que estemos, hay que usar herramientas de ese contexto para probar afirmaciones de álgebra lineal.

Entradas relacionadas

Agradecimiento

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»