Archivo de la etiqueta: ideales

Álgebra Superior II: Ideales en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada pasada hablamos del concepto de divisibilidad en los números enteros. Enunciamos y demostramos varias de sus propiedades. La noción de divisibilidad da lugar a muchos otros conceptos importantes dentro de la teoría de los números enteros, como el máximo común divisor, el mínimo común múltiplo y los números primos. Así mismo, la noción de divisibilidad está fuertemente ligada con los ideales en los enteros.

En esta entrada hablaremos de este último concepto a detalle. Es una entrada un poco técnica, pero nos ayudará para asentar las bases necesarias para poder hablar de los máximos comunes divisores y los mínimos comunes múltiplos con comodidad un poco más adelante.

Ideales en los enteros y una equivalencia

Los ideales son ciertas estructuras importantes en matemáticas. En el caso particular de los números enteros, tenemos la siguiente definición.

Definición. Un ideal de $\mathbb{Z}$ es un subconjunto $I$ de $\mathbb{Z}$ que cumple las siguientes dos propiedades:

  • No es vacío.
  • Es cerrado bajo restas, es decir, si $a$ y $b$ están en $I$, entonces $a-b$ también.

Veamos un ejemplo sencillo. Diremos que un número entero es par si es múltiplo de $2$ y que es impar si no es múltiplo de dos.

Ejemplo. El conjunto de todos los números pares son un ideal de $\mathbb{Z}$. Este conjunto claramente no es vacío, pues adentro de él está, por ejemplo, el $2$. Además, si tenemos que dos números $a$ y $b$ son pares, entonces por definición podemos encontrar enteros $k$ y $l$ tales que $a=2k$ y $b=2l$, de modo que $$a-b=2k-2l=2(k-l),$$ lo cual nos dice que $a-b$ también es par.

$\triangle$

Como veremos un poco más adelante, el ejemplo anterior se puede generalizar. Antes de ver esto, veremos una caracterización un poco distinta de lo que significa ser un ideal.

Proposición. Un subconjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si cumple las siguientes tres propiedades:

  • No es vacío.
  • Es cerrado bajo sumas, es decir, si $a$ y $b$ están en $I$, entonces $a+b$ también.
  • Es absorbente, es decir, si $a$ está en $I$ y $b$ está en $\mathbb{Z}$, entonces $ab$ también está en $I$.

Demostración. Primero veremos que si $I$ es un ideal, entonces cumple las tres propiedades anteriores. Luego veremos que si $I$ cumple las tres propiedades anteriores, entonces es un idea.

Supongamos que $I$ es un ideal. Por definición, no es vacío, que es lo primero que queríamos ver. Veamos ahora que es cerrado bajo sumas. Supongamos que $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas y $b-b=0$, obtenemos que $b$ está en $I$. Usando nuevamente que $b$ es cerrado bajo restas para $0$ y $b$, obtenemos que $0-b=-b$ también está en $I$. Usando una última vez la cerradura de la resta, obtenemos ahora que $a+b=a-(-b)$ está en $I$, como queríamos.

La tercera propiedad la demostraremos primero para los $b\geq 0$ por inducción. Si $b=0$, debemos ver que $0\cdot a=0$ está en $I$. Esto es cierto pues en el párrafo anterior ya vimos por qué $0$ está en $I$. Supongamos ahora que para cierta $b$ fija se tiene que $ab$ está en $I$. Por la cerradura de la suma obtenemos que $$ab+a=ab+a\cdot 1=a(b+1)$$ también está en $I$, como queríamos. Aquí usamos que $1$ es identidad multiplicativa, la distributividad, la hipótesis inductiva y la cerradura de la suma.

Nos falta ver qué pasa con los $b<0$. Sin embargo, si $b<0$, tenemos que $a(-b)$ sí está en $I$ (pues $-b>0$). Así, por la cerradura de la resta tenemos que $0-a(-b)=ab$ está en $I$.

Apenas llevamos la mitad de la demostración, pues vimos que la definición de ideal implica las tres propiedades que se mencionan. Pero el regreso es más sencillo. Supongamos que un conjunto $I$ cumple las tres propiedades mencionadas. Como cumple la primera, entonces no es vacío. Ahora vemos que es cerrado bajo restas. Tomemos $a$ y $b$ en $I$. Como cumple la segunda propiedad, tenemos que $(-1)b=-b$ está en $I$. Como cumple la cerradura de la suma, tenemos que $a+(-b)=a-b$ está en $I$. Así, $I$ es cerrado bajo restas.

$\square$

La ventaja del resultado anterior es que nos permitirá pensar a los ideales de una o de otra forma, de acuerdo a lo que sea más conveniente para nuestros fines más adelante.

Clasificación de ideales

Veamos la generalización de nuestro ejemplo de números pares e impares.

Definición. Sea $n$ un entero. Al conjunto de todos los múltiplos de $n$ lo denotaremos por $n\mathbb{Z}$ y lo llamaremos el conjunto de los múltiplos de $n$, es decir:

$n\mathbb{Z}=\{nm: m\in \mathbb{Z}\}.$

Proposición. Si $n$ es cualquier entero, entonces $n\mathbb{Z}$ es un ideal de $\mathbb{Z}$.

Demostración. Claramente $n\mathbb{Z}$ no es vacío pues, por ejemplo, $0=0\cdot n$ está en $n\mathbb{Z}$. La demostración de la cerradura de la resta se sigue de un corolario de la entrada anterior. Si $a,b$ están en $n\mathbb{Z}$, entonces ambos son divisibles entre $n$, así que su resta $a-b$ también. Así, $a-b$ está en $n\mathbb{Z}$.

$\square$

El ejemplo anterior de hecho da todos los posibles ideales que existen en $\mathbb{Z}$. El siguiente teorema enuncia esto con precisión.

Teorema. Un conjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si existe un entero no negativo $n$ tal que $I=n\mathbb{Z}$.

Demostración. Tomemos $I$ un ideal de $\mathbb{Z}$. Existe la posibilidad de que $I=\{0\}$, pues en efecto este es un ideal: es no vacío (pues tiene a $0$) y es cerrado bajo restas (pues sólo hay que verificar que $0-0=0$ está en I). Si este es el caso, entonces $I=0\mathbb{Z}$, como queríamos. Así, a partir de ahora supondremos que $I$ no es este conjunto. Veremos que $I$ tiene por lo menos un elemento positivo.

Sea $a\in I$ cualquier elemento que no sea $0$. Si $a$ es positivo, entonces ya lo logramos. Si $a$ es negativo, entonces notamos que $0=a-a$ está en $I$, y que entonces $-a=0-a$ está en $I$. Pero entonces $-a$ es un número positivo en $I$.

Debido a esto, por el principio del buen orden podemos tomar al menor entero positivo $n$ que está en $I$. Afirmamos que $I=n\mathbb{Z}$. Por la caracterización de ideales que dimos en la sección anterior, todos los múltiplos de $n$ están en $I$, así que $I\supseteq n\mathbb{Z}$.

Veamos que $I\subseteq n\mathbb{Z}$ procediendo por contradicción. Supongamos que este no es el caso, y que entonces existe un $m\in I$ que no sea múltiplo de $n$. Por el algoritmo de la división, podemos escribir $m=qn+r$ con $0<r<n$. Como $m$ está en $I$ y $qn$ está en $I$, tendríamos entonces que $m-qn=r$ está en $I$. ¡Pero esto es una contradicción! Tendríamos que $r$ está en $I$ y que $0<r<n$, lo cual contradice que $n$ era el menor entero positivo en $I$ que tomamos con el principio del buen orden. Esta contradicción sólo puede evitarse si $m$ es múltiplo de $n$, como queríamos.

$\square$

Un teorema como el anterior se conoce como un teorema de clasificación pues nos está diciendo cómo son todas las posibles estructuras que definimos a partir de un criterio fácil de enunciar.

Ideal generado por dos elementos

Dado un conjunto de números enteros $S$, podríamos preguntarnos por el ideal más chiquito que contenga a $S$. Un ejemplo sencillo es tomar $S$ con sólo un elemento, digamos $S=\{n\}$. En este caso, es fácil convencerse de que el ideal más pequeño que contiene a $S$ es precisamente $n\mathbb{Z}$ (ve los problemas de la tarea moral).

Un caso un poco más interesante es, ¿qué sucede si tenemos dos elementos?

Ejemplo. ¿Cuál será el menor ideal posible $I$ que tiene a los números $13$ y $9$? Empecemos a jugar un poco con la propiedad de la cerradura de la resta. Como $13$ y $9$ están, entonces también está $4=13-9$. Como $9$ y $4$ están, entonces también está $5=9-4$. Así mismo, debe estar $1=5-4$. Pero aquí ya llegamos a algo especial: que el $1$ está. Recordemos los ideales también cumplen que una vez que está un número, están todos sus múltiplos. Así, $1\mathbb{Z}$ está contenido en $I$. Pero entonces $I=1\mathbb{Z}=\mathbb{Z}$.

$\square$

No siempre obtenemos $\mathbb{Z}$ como respuesta. Para un ejemplo en donde se obtiene $2\mathbb{Z}$, ve los problemas de la tarea moral. En la siguiente entrada hablaremos con más detalle de la respuesta, pero por el momento probaremos lo siguiente.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb: r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

En otras palabras, «$M$ es el ideal más pequeño (en contención) que tiene a $a$ y a $b$».

Demostración. Veamos primero que $M$ en efecto es un ideal. Para ello, notemos que no es vacío pues, por ejemplo, $0=0\cdot a+0\cdot b$ está en $M$. Además, es cerrado bajo restas pues si tenemos dos elementos en $M$, son de la forma $ra+sb$ y $ka+lb$, y su resta es $$(ra+sb)-(ka+lb)=(r-k)a+(s-l)b,$$ que vuelve a estar en $M$ pues $r-k$ y $s-l$ son enteros. Además, $a=1\cdot a+ 0\cdot b$, lo que muestra que $a$ está en $M$ y $b=0\cdot a + 1 \cdot b$, lo que muestra que $b$ está en $M$ también. Con esto demostramos el primer punto.

Para el segundo punto, supongamos que $a$ está en $I$ y que $b$ está en $I$ también. Como $I$ es idea, tiene a todos los múltiplos de $a$ y los de $b$, es decir, a todos los números de la forma $ra$ y $sb$. Como es ideal, también es cerrado bajo sumas, así que tiene todas las formas de números de este estilo. En particular, tiene a todos los números de la forma $ra+sb$ (variando $r$ y $s$), es decir, a todos los elementos de $I$, como queríamos.

$\square$

Quizás notaste algo raro. El conjunto $M$ es un ideal, pero se ve un poco distinto de los que obtuvimos con nuestra caracterización de la sección anterior. Parece más bien que «está hecho por dos enteros» en vez de estar hecho sólo por uno. Esto no es problema. Nuestra caracterización nos dice que debe existir un entero $d$ tal que $M=d\mathbb{Z}$. Esto nos llevará en la siguiente entrada a estudiar el máximo común divisor.

Intersección de ideales

Los ideales de $\mathbb{Z}$ son subconjuntos, así que podemos aplicarles operaciones de conjuntos. ¿Qué sucede si intersectamos dos ideales? La siguiente operación nos dice que

Proposición. Si $I$ y $J$ son ideales de $\mathbb{Z}$, entonces $I\cap J$ también.

Demostración. La demostración es sencilla. Como $I$ y $J$ son ideales, se puede ver que ambos tienen al $0$, y que por lo tanto su intersección también. Ahora veamos que $I\cap J$ es cerrada bajo restas. Si $a$ y $b$ están en $I\cap J$, entonces $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas, $a-b$ está en $I$. Análogamente, está en $J$. Así, $a-b$ está en $I\cap J$, como queríamos.

$\square$

Este resultado motivará nuestro estudio del mínimo común múltiplo un poco más adelante.

Más adelante…

Esta fue una entrada un poco técnica, pero ahora ya conocemos a los ideales en los enteros, algunas de sus propiedades y hasta los caracterizamos. La idea de tomar el ideal generado por dos elementos nos llevará a estudiar en la siguiente entrada el concepto de máximo común divisor. Y luego, la idea de intersectar ideales nos llevará en un par de entradas a explorar la noción de mínimo común múltiplo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Imagina que sabes que un ideal tiene al número $6$. Esto forza a que también tenga a $6-6=0$. Así, esto forza a que también tenga el $0-6=-6$. Sigue así sucesivamente, jugando con todas las nuevas restas que deben quedarse dentro del ideal. ¿Cuál es el menor ideal que puede tener al $6$?
  2. Repite lo anterior, pero ahora suponiendo que tu ideal tiene a los números $10$ y $12$. ¿Qué números puedes obtener si repetidamente puedes hacer restas? ¿Quién sería el menor ideal que tiene a ambos números?
  3. Sean $I_1,\ldots,I_k$ ideales de $\mathbb{N}$. Demuestra que $I_1\cap I_2 \cap \ldots \cap I_k$ también es un idea. Como sugerencia, usa inducción.
  4. Toma a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$. Por el resultado de la entrada, tenemos que su intersección $A$ también es un ideal. Intenta averiguar y demostrar quién es el $k$ tal que $A=k\mathbb{Z}$.
  5. ¿Es cierto que la unión de dos ideales siempre es un ideal? Si es falso, encuentra contraejemplos. Si es verdadero, da una demostración. Si es muy fácil, ¿puedes decir exactamente para qué enteros $m$ y $n$ sucede que $m\mathbb{Z}\cup n\mathbb{Z}$ es un ideal?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Divisibilidad en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos del algoritmo de la división. Dados dos números enteros $a$ y $b$, con $b\neq 0$, nos permite poner de manera única a $a$ de la forma $a=qb+r$, en donde $q$ y $r$ son enteros, y además $0\leq r < |b|$. En otras palabras, nos permite poner a un número como «copias de otro», más un residuo «chiquito». En esta entrada hablaremos de la divisibilidad en los enteros.

La divisibilidad se da cuando pasa una situación especial en el algoritmo de la división: cuando el residuo obtenido es igual a cero. Es decir, cuando podemos escribir $a=qb$. Cuando esto sucede, diremos que $b$ divide a $a$, o bien que $a$ es múltiplo de $b$. En esta entrada daremos una definición formal que contemple este caso y estudiaremos varias de sus propiedades.

Definición de divisibilidad

La noción fundamental que estudiaremos en esta entrada es la de divisibilidad. La definición crucial es la siguiente.

Definición. Sean $m$ y $n$ enteros. Diremos que $m$ divide a $n$ si existe un entero $k$ tal que $n=km$. En notación, escribiremos $m|n$. También diremos que $n$ es un múltiplo de $m$, o bien que $n$ es divisible entre $m$.

Ejemplo. El número $35$ es divisible entre $5$ pues podemos encontrar un entero $k$ tal que $35=k\cdot 5$. Concretamente, podemos escribir $35=7\cdot 5$. Así mismo, este número también es divisible entre $-7$ pues podemos encontrar un entero $k$ tal que $35=k\cdot (-7)$, en concreto, podemos escribir $35=(-5)(-7)$.

Por otro lado, el $35$ no es múltiplo de $8$. ¿Cómo sabemos esto? Al hacer el algoritmo de la división obtenemos que $35=4\cdot 8 + 3$. Como esta es la única forma de escribir a $35$ como un múltiplo de $8$ más un residuo entre $0$ y $7$, entonces es imposible escribirlo como un múltiplo de $8$ más residuo $0$. En otras palabras, no es múltiplo de $8$.

$\triangle$

Propiedades básicas de divisibilidad

La siguiente proposición habla de algunas de las propiedades básicas de la divisibilidad. Las enunciaremos y daremos sus demostraciones para poner en práctica nuestra definición de divisibilidad.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Los enteros $1$ y $-1$ dividen a cualquier otro entero.
  • El entero $0$ es divisible por cualquier entero.
  • Es reflexiva, es decir para cualquier entero $n$ se tiene que $n|n$.
  • Es transitiva, es decir si $l,m,n$ son enteros tales que $l|m$ y $m|n$, entonces $l|n$.

Demostración. A continuación demostramos la demostración, inciso por inciso.

  • Recordemos que si $n$ es un entero, entonces $n=n\cdot 1$. Esto nos dice que $1$ divide a $n$. Además, por las propiedades de las operaciones en los números enteros tenemos lo siguiente:
    \begin{align*}
    n&=n\cdot 1\\
    &=n\cdot ((-1)\cdot (-1))\\
    &=(n\cdot (-1))\cdot (-1)\\
    &=(-n)\cdot (-1).
    \end{align*}
    Aquí estamos usando que $(-1)(-1)=1$, la asociatividad del producto en los números enteros y que $(-1)n=-n$. En resumen, obtenemos que $n=(-n)(-1)$, lo cual nos dice que $-1|n$.
  • Aquí notamos que para cualquier entero $n$ tenemos que $0=0\cdot n$. Así, $n|0$.
  • Anteriormente usamos que $n=n\cdot 1$ para concluir $1|n$. Así mismo, al usar $n=1\cdot n$ obtenemos que $n|n$.
  • Veamos la transitividad. Supongamos que $l,m,n$ son enteros tales que $l|m$ y $m|n$. Por definición de divisibilidad podemos encontrar enteros $q$ y $r$ tales que $m=ql$ y $n=rm$. Substituyendo el valor de $m$ de la primera igualdad en la segunda y usando asociatividad obtenemos que: $$n=rm=r(ql)=(rq)l.$$ Esto precisamente nos dice que $l|n$.

$\square$

Divisibilidad y operaciones en los enteros

La divisibilidad se comporta bien con las operaciones en los números enteros. En la siguiente proposición encontramos algunas de las propiedades que vuelven esto un poco más preciso.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Para enteros $l,m,n$, si $l|m$ y $l|n$, entonces $l|m+n$.
  • Para enteros $l,m,n$, si $l|m$, entonces $l|mn$.
  • Para enteros $l$, $a$, $b$, $c$, $d$ se cumple que si $l|m$ y $l|n$, entonces $l|am+bn$.

Demostración. Daremos la demostración inciso por inciso:

  • Como $l|m$ y $l|n$, por definición existen enteros $r$ y $s$ tales que $m=rl$ y $n=sl$. Al hacer la suma y usar la distributividad del producto sobre la suma obtenemos que $$m+n=rl+sl=(r+s)l.$$ Esto por definición está diciendo que $l$ divide a $m+n$.
  • Aquí podemos utilizar una propiedad anterior. Tenemos que $mn=nm$, por lo cual $mn$ es divisible entre $m$. Es decir, tenemos $l|m$ y $m|mn$. Así, por la transitividad de la divisibilidad, que ya probamos anteriormente, tenemos que $l|mn$.
  • Este inciso es consecuencia de los dos anteriores y, de hecho, ya no tenemos que usar la definición. Por el segundo inciso, como $l|m$, entonces $l|am$. Así mismo, como $l|n$, entonces $l|bn$. Finalmente, por el primer inciso, como $l|am$ y $l|bn$, entonces $l|am+bn$.

$\square$

Observa que si ponemos $a=1$ y $b=-1$ en la última propiedad obtenemos el siguiente corolario: si $l|m$ y $l|n$, entonces $l|m-n$.

Divisibilidad y orden en los enteros

Hay una tercera clase de propiedades que cumple la noción de divisibilidad: aquellas relacionadas con el orden en los enteros. Veamos esto.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Si $m$ y $n$ son enteros distintos de cero tales que $m|n$, entonces $|m|\leq |n|$.
  • Si $m$ y $n$ son enteros positivos tales que $m|n$, entonces $m\leq n$.
  • Si $m$ y $n$ son enteros tales que $m|n$ y $n|m$, entonces $|m|=|n|$.

Demostración. Demostraremos la primera afirmación a detalle, pues a partir de ella salen las otras dos de manera prácticamente inmediata.

Tomemos dos enteros $m$ y $n$ tales que $m|n$. Por definición de divisibilidad, tenemos que existe un entero $k$ tal que $n=km$. Al tomar valor absoluto de esta expresión, obtenemos que $|n|=|km|$. Por propiedades del valor absoluto, tenemos que $|km|=|k||m|$. Como $n$ es distinto de cero, entonces $k$ también es distinto de cero, así que $|k|\geq 1$. De esta manera, tenemos la siguiente cadena de igualdades y desigualdades: $$|n|=|km|=|k||m|\geq 1\cdot |m| = |m|.$$

Esto es lo que queríamos demostrar.

Para el segundo inciso, como $m$ y $n$ son positivos, entonces entran en el caso del primer inciso. Además, por ser positivos tenemos $|m|=m$ y $|n|=n$. De este modo, por el primer inciso tenemos $m\leq n$.

En el tercer inciso primero tenemos que descartar algunos casos. Si $m=0$, entonces la divisibilidad $0|n$ nos dice que $n=k\cdot 0$ para alguna $k$ entera, pero entonces $n=0$ también, y entonces se cumple $|m|=0=|n|$. El caso $n=0$ es análogo. Ya descartados estos casos, podemos suponer que $m$ y $n$ son distintos de cero. Por el primer inciso tendríamos entonces $|m|\leq |n|$ y $|m|\geq |n|$. Así, $|m|=|n|$, como queríamos.

$\square$

Un ejemplo que usa varias propiedades de divisibilidad

¿Por qué es bueno recordar y saber cuándo usar propiedades de la divisibilidad? Porque nos permite simplificar ciertos problemas y resolverlos más fácilmente. Veamos un ejemplo.

Problema. Encuentra todos los divisores del número $12$.

Solución. Supongamos que $d$ es un divisor de $12$. Tenemos entonces que $|d|\leq |12|=12$, así, $d$ es un número entre $-12$ y $12$. Fuera de este rango no pueden existir divisores de $12$.

Por reflexividad tenemos que $12|12$. Por la propiedad de $1$ y $-1$ tenemos que $1|12$ y $-1|12$. Es fácil ver $12=2\cdot 6$ y $12=3\cdot 4$, así que $2$, $3$, $4$ y $6$ son todos ellos divisores de $12$. Los negativos de estos números también serán divisores entonces pues, por ejemplo, como $12=3\cdot 4$, también tenemos $12=(-3)(-4)$.

De este modo, hasta ahora hemos visto que $-12,-6,-4,-3,-2,-1,1,2,3,4,6,12$ son todos ellos divisores de $12$.

El $5$ claramente no es, pues al hacer el algoritmo de la división obtenemos $12=2\cdot 5 +2$, con residuo $2$. Entonces el $-5$ tampoco puede ser divisor.

Podríamos hacer lo mismo con $7,8,9,10,11$. Pero una forma fácil de ver que ninguno de ellos va a funcionar es que si intentáramos escribir $12=7k$, por ejemplo, se tiene que $k$ no puede ser $1$ (pues $12\neq 7$) y si ponemos $k\geq 2$ entonces el producto es al menos $14$, que ya se pasa de $12$. Así, ni estos números, ni $-7,-8,-9,-10,-11$ son divisores de $12$.

$\triangle$

Más adelante…

La noción de divisibilidad da pie a varios otros conceptos en la teoría de números enteros. Dentro de algunas entradas hablaremos de dos conceptos importantes: el de máximo común divisor y mínimo común múltiplo en los enteros. Sin embargo, antes de hacer esto tomaremos una pequeña desviación para hablar de un concepto un poco abstracto pero bastante útil: los ideales.

Tarea moral

  1. Encuentra todos los divisores del número $24$ (tanto los positivos, como los negativos) y verifica que en efecto cumplen con la definición dada en esta entrada.
  2. Encuentra contraejemplos para las siguientes afirmaciones:
    1. Si $l$, $m$ y $n$ son enteros tales que $l|m$ y $n|m$, entonces $l+n|m$.
    2. Si $l,m,n$ son enteros tales que $l|mn$, entonces o bien $l|m$ o bien $l|n$.
  3. Demuestra las siguientes dos propiedades de la noción de divisibilidad:
    1. Si $m$ y $n$ son enteros positivos tales que $m|n$ y $n|m$, entonces $m=n$.
    2. Si $m$ es divisor de $n$ con $n=km$, entonces $k$ también es divisor de $n$.
  4. Sean $m$ y $n$ enteros. Demuestra que $m$ divide a $n$ si y sólo si $m^2$ divide a $n^2$.
  5. Sea $n$ un entero positivo, $m$ un entero, $a_1,\ldots,a_n$ enteros y $b_1,\ldots,b_n$ enteros. Demuestra que si $m|b_i$ para todo $i=1,\ldots,n$, entonces $m| \sum_{i=1}^n a_ib_i$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Máximo común divisor de polinomios y algoritmo de Euclides

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos estudiando propiedades aritméticas del anillo de polinomios con coeficientes reales. En la entrada anterior introdujimos el algoritmo de la división, la noción de divisibilidad y los polinomios irreducibles. Además, mostramos el teorema del factor y el teorema del residuo. Lo que haremos ahora es hablar del máximo común divisor de polinomios.

Mucha de la teoría que desarrollamos en los enteros también se vale para $\mathbb{R}[x]$. Como en $\mathbb{Z}$, lo más conveniente para desarrollar esta teoría es comenzar hablando de ideales. Con estos buenos cimientos, veremos que el máximo común divisor de dos polinomios se puede escribir como «combinación lineal de ellos». Para encontrar la combinación lineal de manera práctica, usaremos de nuevo el algoritmo de Euclides.

Antes de comenzar, haremos una aclaración. Hasta ahora hemos usado la notación $f(x), g(x),h(x)$, etc. para referirnos a polinomios. En esta entrada frecuentemente usaremos nada más $f,g,h$, etc. Por un lado, esto simplificará los enunciados y demostraciones de algunos resultados. Por otro lado, no corremos el riesgo de confusión pues no evaluaremos a los polinomios en ningún real.

Ideales de $\mathbb{R}[x]$

Comenzamos con la siguiente definición clave, que nos ayuda a hacer las demostraciones de máximo común divisor de polinomios de manera más sencilla.

Definición. Un subconjunto $I$ de $\mathbb{R}[x]$ es un ideal si pasa lo siguiente:

  1. El polinomio cero de $\mathbb{R}[x]$ está en $I$.
  2. Si $f$ y $g$ son elementos de $\mathbb{R}[x]$ en $I$, entonces $f+g$ está en $I$.
  3. Si $f$ y $g$ son elementos de $\mathbb{R}[x]$, y $f$ está en $I$, entonces $fg$ está en $I$.

Ejemplo 1. El conjunto $I_0=\{f\in \mathbb{R}[x]\mid f(0)=0 \}$.

Evidentemente el polinomio constante $0$, está en $I_0$, ya que evaluado en cualquier número es cero (en particular al evaluarlo en 0).

Si $f,g\in I_0$, entonces $(f+g)(0)=f(0)+g(0)=0+0=0$, por lo que $f+g\in I_0$.

Finalmente, si $g\in I_0$ y $f$ es cualquier polinomio, tenemos que $(fg)(0)=f(0)g(0)=f(0)\cdot 0=0$, por lo que $fg\in I_0$. Con esto concluimos que $I_0$ es un ideal.

$\triangle$

Al igual que en los enteros, los únicos ideales consisten de múltiplos de algún polinomio. El siguiente resultado formaliza esto.

Teorema (caracterización de ideales en $\mathbb{R}[x]$). Un subconjunto $I$ es un ideal de $\mathbb{R}[x]$ si y sólo si existe un polinomio $f$ tal que $$I=f\mathbb{R}[x]:=\{fg: g \in \mathbb{R}[x]\}.$$

Demostración de «la ida». Primero mostraremos que cualquier conjunto de múltiplos de un polinomio dado $f$ es un ideal. Tomemos $f$ en $\mathbb{R}[x]$ y $$I=f\mathbb{R}[x]=\{fg: g \in \mathbb{R}[x]\}.$$

La propiedad (1) de la definición de ideal se cumple pues tomando $g=0$ tenemos que $f\cdot 0 = 0$ está en $I$.

Para la propiedad (2), tomamos $fg_1$ en $I$ y $fg_2$ en $I$, es decir, con $g_1$ y $g_2$ en $\mathbb{R}[x]$. Su suma es, por la ley de distribución, el polinomio $f\cdot (g_1+g_2)$, que claramente está en $I$ pues es un múltiplo de $f$.

Para la propiedad (3), tomamos $fg$ en $I$ y $h$ en $\mathbb{R}[x]$. El producto $(fg)\cdot h$ es, por asociatividad, igual al producto $f\cdot(gh)$, que claramente está en $I$. De esta forma, $I$ cumple (1), (2) y (3) y por lo tanto es un ideal.

$\square$

Demostración de «la vuelta». Mostraremos ahora que cualquier ideal $I$ es el conjunto de múltiplos de un polinomio. Si $I=\{0\}$, que sólo tiene al polinomio cero, entonces $I$ es el conjunto de múltiplos del polinomio $0$. Así, podemos suponer que $I$ tiene algún elemento que no sea el polinomio $0$.

Consideremos el conjunto $A$ de naturales que son grado de algún polinomio en $I$. Como $I$ tiene un elemento no cero, $A$ es no vacío. Por el principio del buen orden, $A$ tiene un mínimo, digamos $n$. Tomemos en $I$ un polinomio $f$ de grado $n$. Afirmamos que $I$ es el conjunto de múltiplos de $f$, es decir, $$I=f\mathbb{R}[x].$$

Por un lado, como $f$ está en $I$ e $I$ es un ideal, por la propiedad (3) de la definición de ideal se tiene que $fg$ está en $I$ para todo $g$ en $\mathbb{R}[x]$. Esto muestra la contención $f\mathbb{R}[x]\subseteq I$.

Por otro lado, supongamos que hay un elemento $h$ que está en $I$, pero no es múltiplo de $f$. Por el algoritmo de la división, podemos encontrar polinomios $q$ y $r$ tales que $h-qf=r$ y $r$ es el polinomio cero o de grado menor a $f$. No es posible que $r$ sea el polinomio cero pues dijimos que $h$ no es múltiplo de $f$. Así, $r$ no es el polinomio cero y su grado es menor al de $f$.

Notemos que $-qf$ está en $I$ por ser un múltiplo de $f$ y que $h$ está en $I$ por cómo lo elegimos. Por la propiedad (2) de la definición de ideal se tiene entonces que $r=h+(-qf)$ también está en $I$. Esto es una contradicción, pues habíamos dicho que $f$ era un polinomio de grado mínimo en $I$, pero ahora $r$ tiene grado menor y también está en $I$. Por lo tanto, es imposible que exista un $h$ en $I$ que no sea múltiplo de $f$. Esto muestra la contención $I\subseteq f\mathbb{R}[x]$.

$\square$

Ejemplo 2. En el ejemplo anterior, $I_0$ denotaba el conjunto de polinomios que se anulan en $0$, podemos demostrar que $I_0=x\mathbb{R}[x]$, ya que si $f\in I_0$, por el teorema del factor, el polinomio $x-0$ divide a $f$, es decir que $f(x)=xg(x)$ para alguan $g\in \mathbb{R}[x]$. Esto prueba que $I_0\subseteq x\mathbb{R}$, dejamos el resto de los detalles como un ejercicio moral.

$\triangle$

El teorema anterior nos dice que cualquier ideal se puede escribir como los múltiplos de un polinomio $f$. ¿Es cierto que este polinomio $f$ es único? Para responder esto, pensemos qué sucede si se tiene $$f\mathbb{R}[x]=g\mathbb{R}[x],$$ o, dicho de otra forma, pensemos qué sucede si $f$ divide a $g$ y $g$ divide a $f$.

Si alguno de $f$ ó $g$ es igual a $0$, entonces el otro también debe de serlo. Así, podemos suponer que ninguno de ellos es igual a $0$. Como $g$ divide a $f$, podemos escribir a $f$ como $hg$ para $h$ un polinomio no cero. De manera similar, podemos escribir a $g$ como un polinomio $kf$ para $k$ un polinomio no cero. Pero entonces $$f=hg=hkf.$$

El grado del lado izquierdo es $\deg(f)$ y el del derecho es $\deg(h)+\deg(k)+\deg(f)$, de donde obtenemos que $\deg(h)=\deg(k)=0$. En otras palabras, concluimos que $h$ y $k$ son polinomios constantes y distintos de cero. Resumimos esta discusión a continuación.

Proposición. Tomemos $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$ distintos del polinomio $0$. Si $f(x)$ divide a $g(x)$ y $g(x)$ divide a $f(x)$, entonces $f(x)=hg(x)$ para un real $h\neq 0$. Del mismo modo, si $f(x)=hg(x)$ con $h$ un real, entonces $f(x)$ divide a $g(x)$ y $g(x)$ divide a $f(x)$.

Cuando sucede cualquiera de las cosas de la proposición anterior, decimos que $f(x)$ y $g(x)$ son asociados.

Ya que no hay un único polinomio que genere a un ideal, nos conviene elegir a uno de ellos que cumpla una condición especial. El coeficiente principal de un polinomio es el que acompaña al término de mayor grado. En otras palabras, si $p(x)$ es un polinomio de grado $n$ dado por $$p(x)=a_0+\ldots+a_nx^n,$$ con $a_n\neq 0$, entonces $a_n$ es coeficiente principal.

Definición. Un polinomio es mónico si su coeficiente principal es $1$.

Por la proposición anterior, existe un único polinomio mónico asociado a $p(x)$, y es $\frac{1}{a_n}p(x)$. Podemos resumir las ideas de esta sección mediante el siguiente teorema.

Teorema. Para todo ideal $I$ de $\mathbb{R}[x]$ distinto del ideal $\{0\}$, existe un único polinomio mónico $f$ tal que $I$ es el conjunto de múltiplos de $f$, en símbolos, $$I=f\mathbb{R}[x].$$

Máximo común divisor de polinomios

Tomemos $f$ y $g$ polinomios en $\mathbb{R}[x]$. Es sencillo ver, y queda como tarea moral, que el conjunto $$f\mathbb{R}[x]+g\mathbb{R}[x]=\{rf+sg: r,s \in \mathbb{R}[x]\}$$ satisface las propiedades (1), (2) y (3) de la definición de ideal. Por el teorema de caracterización de ideales, la siguiente definición tiene sentido.

Definición. El máximo común divisor de $f$ y $g$ es el único polinomio mónico $d$ en $\mathbb{R}[x]$ tal que $$f\mathbb{R}[x]+g\mathbb{R}[x] = d\mathbb{R}[x].$$ A este polinomio lo denotamos por $\MCD{f,g}$.

De manera inmediata, de la definición de $\MCD{f,g}$, obtenemos que es un elemento de $f\mathbb{R}[x]+g\mathbb{R}[x]$, o sea, una combinación lineal polinomial de $f$ y $g$. Este es un resultado fundamental, que enunciamos como teorema.

Teorema (identidad de Bézout). Para $f$ y $g$ en $\mathbb{R}[x]$ existen polinomios $r$ y $s$ en $\mathbb{R}[x]$ tales que $$\MCD{f,g}=rf+sg.$$

El nombre que le dimos a $\MCD{f,g}$ tiene sentido, en vista del siguiente resultado.

Teorema. Para $f$ y $g$ en $\mathbb{R}[x]$ distintos del polinomio cero se tiene que:

  • $\MCD{f,g}$ divide a $f$ y a $g$.
  • Si $h$ es otro polinomio que divide a $f$ y a $g$, entonces $h$ divide a $\MCD{f,g}$.

Demostración. Por definición, $$f\mathbb{R}[x]+g\mathbb{R}[x] = \MCD{f,g}\mathbb{R}[x].$$ El polinomio $f$ pertenece al conjunto del lado izquierdo, pues lo podemos escribir como $$1\cdot f + 0 \cdot g,$$ así que también está en el lado derecho. Por ello, $f$ es un múltiplo de $\MCD{f,g}$. De manera similar se prueba que $g$ es un múltiplo de $\MCD{f,g}$.

Para la segunda parte, escribimos a $\MCD{f,g}$ como combinación lineal polinomial de $f$ y $g$, $$\MCD{f,g}=rf+sg.$$ De aquí es claro que si $h$ divide a $f$ y a $g$, entonces $h$ divide a $\MCD{f,g}$.

$\square$

Todo esto va muy bien. El máximo común divisor de dos polinomios en efecto es un divisor, y es «el mayor», en un sentido de divisibilidad. Además, como en el caso de $\mathbb{Z}$, lo podemos expresar como una combinación lineal de sus polinomios. En la tarea moral puedes ver algunos ejemplos que hablan del concepto dual: el mínimo común múltiplo.

El algoritmo de Euclides

Al igual que como sucede en los enteros, podemos usar el algoritmo de la división iteradamente para encontrar el máximo común divisor de polinomios, y luego revertir los pasos para encontrar de manera explícita al máximo común divisor como una combinación lineal polinomial de ellos. Es un buen ejercicio enunciar y demostrar que esto es cierto. No lo haremos aquí, pero veremos un ejemplo de cómo aplicar el algoritmo.

Problema: Encuentra el máximo común divisor de los polinomios
\begin{align*}
a(x)&=x^7+x^6+x^5+x^4+x^3+x^2+x+1\\
b(x)&=x^4+x^3+x^2+x+1,
\end{align*} y exprésalo como combinación lineal de $a(x)$ y $b(x)$.

Solución. Aplicando el algoritmo de la división repetidamente, tenemos lo siguiente:

\begin{align*}
a(x)&=x^3b(x)+(x^2+x+1)\\
b(x)&=x^2(x^2+x+1)+(x+1)\\
x^2+x+1&=x(x+1)+1.
\end{align*}

Esto muestra que $a(x)$ y $b(x)$ tienen como máximo común divisor al polinomio $1$. Por lo que discutimos antes, debe haber una combinación lineal polinomial de $a(x)$ y $b(x)$ igual a $1$ Para encontrarla de manera explícita, invertimos los pasos:

\begin{equation*}
\begin{split}
1 & =(x^2+x+1)-x(x+1)\\
& =(x^2+x+1)-x(b(x)-x^2(x^2+x+1))\\
& =(x^2+x+1)(x^3+1)-xb(x)\\
& =(x^3+1)(a(x)-x^3(b(x))-xb(x)\\
& =(x^3+1)a(x)-x^3(x^3+1)b(x)-xb(x)\\
& =(x^3+1)a(x)+(-x^6-x^3-x)b(x)
\end{split}
\end{equation*}

Así, concluimos que una combinación lineal que sirve es: $$(x^3+1)a(x)+(-x^6-x^3-x)b(x) = 1.$$

$\triangle$

Más adelante…

Como mencionamos, los conceptos que desarrollamos en esta sección son muy similares a los que desarrollamos para $\mathbb{Z}$, sin embargo, para que puedas acostumbrarte a la notación, en la siguiente entrada practicaremos como calcular el Máximo Común Divisor para dos polinomios.

Después de eso, el siguiente paso será extrapolar el concepto de elementos primos en el conjunto de los polinomios y con esa nueva herramienta ver la posibilidad de poder dar un resultado análogo al teorema fundamental de la aritmética que dimos en $\mathbb{Z}$.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Verifica que el conjunto $$f\mathbb{R}[x]+g\mathbb{R}[x]=\{rf+sg: r,s \in \mathbb{R}[x]\}$$ satisface las propiedades (1), (2) y (3) de la definición de ideal.
  2. Encuentra el máximo común divisor de los polinomios $x^8-1$ y $x^6-1$. Exprésalo como combinación lineal de ellos.
  3. Muestra que la intersección de dos ideales de $\mathbb{R}[x]$ es un ideal de $\mathbb{R}[x]$.
  4. Al único polinomio mónico $m$ tal que $$f\mathbb{R}[x]\cap g\mathbb{R}[x]=m\mathbb{R}[x]$$ le llamamos el mínimo común múltiplo de $f$ y $g$, y lo denotamos $\mcm{f,g}$. Muestra que es un múltiplo de $f$ y de $g$ y que es «mínimo» en el sentido de divisibilidad.
  5. Muestra que si $f$ y $g$ son polinomios mónicos en $\mathbb{R}[x]$ distintos del polinomio cero, entonces $fg = \MCD{f,g} \mcm{f,g}$. ¿Es necesaria la hipótesis de que sean mónicos? ¿La puedes cambiar por una hipótesis más débil?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»