Archivo de la etiqueta: grupo

Álgebra Lineal II: Adjunciones complejas y transformaciones unitarias

Por Ayax Calderón

Introducción

Lo que hemos trabajado en esta unidad tiene su análogo para espacios hermitianos. En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.

Adjunciones en espacios hermitianos

Uno de los ejercicios de la entrada Dualidad y representación de Riesz en espacios euclideanos consiste en enunciar y demostrar el teorema de representación de Riesz para espacios hermitianos. Si recuerdas, eso es justo lo que se necesita para hablar de la adjunción, de modo que en espacios hermitianos también podemos definir la adjunción como sigue.

Definición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

En el caso real la matriz de la transformación adjunta en una base ortonormal era la transpuesta. En el caso complejo debemos tomar la transpuesta conjugada.

Proposición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Sea $\mathcal{B}$ una base ortonormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)=\text{Mat}_{\mathcal{B}}(T)^\ast.$$

La demostración queda como ejercicio.

Transformaciones unitarias e isometrías

En espacios hermitianos también podemos hablar de las transformaciones lineales que preservan la distancia: las isometrías. En el caso real, las isometrías de un espacio a sí mismo las llamábamos ortogonales, pero en el caso complejo usaremos otro nombre.

Definición. Sean $V_1, V_2$ espacios hermitianos sobre $\mathbb{C}$ con productos interiores hermitianos $\langle \cdot,\cdot \rangle_1,\langle \cdot,\cdot \rangle_2$. Diremos que una transformación lineal $T:V_1\to V_2$ es una isometría si es un isomorfismo de espacios vectoriales y para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$ Si $V_1$ $V_2$ son un mismo espacio hermitiano $V$, diremos que $T$ es una transformación unitaria.

Diremos que una matriz $A\in M_n(\mathbb{C})$ se dice unitaria si $AA^\ast=I_n$. Puede demostrarse que si una matriz $A$ es unitaria, entonces la transformación $X\mapsto AX$ también lo es. Así mismo, se puede ver que si $T$ es una transformación unitaria, entonces cualquier representación matricial en una base ortonormal es unitaria.

Equivalencias de matrices y transformaciones unitarias

Así como en el caso real, hay muchas maneras de pensar a las transformaciones y a las matrices unitarias. Puedes pensar en los siguientes resultados como los análogos a las descripciones alternativas en el caso real.

Teorema. Sea $T:V\to V$ una transformación lineal. Las siguientes afirmaciones son equivalentes:

  1. $T$ es unitaria es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T = Id$.

Teorema. Sea $A\in M_n(\mathbb{C})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es unitaria.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  4. Para cualquier $x\in \mathbb{C}^n$, se tiene que $$||Ax||=||x||$.

Propiedades de grupo y caracterización de unitarias

Así como en el caso real las transformaciones ortogonales forman un grupo bajo la composición, en el caso complejo las transformaciones unitarias también forman un grupo bajo la composición. Si hablamos de matrices unitarias, entonces forman un grupo bajo el producto de matrices. Es posible clasificar a las matrices unitarias así como se clasificó a las matrices ortogonales, sin embargo los resultados son notablemente más difíciles de expresar.

Más adelante…

En la siguiente entrada hablaremos de quiénes son las transformaciones complejas para las que se puede enunciar el teorema espectral en el caso complejo. Veremos el resultado correspondiente y haremos énfasis en las diferencias que debemos tomar en cuenta.

Tarea moral

  1. Demuestra que si $A$ es una matriz unitaria, entonces $|\det A|=1$.
  2. Prueba que para que una transformación lineal $T$ de un espacio hermitiano sea unitaria, basta que a los vectores de norma $1$ los mande a vectores de norma $1$.
  3. Describe las matrices $A\in M_n(\mathbb{C})$ que son simultaneamente diagonales y unitarias.
  4. Demuestra que el producto de dos matrices unitarias es una matriz unitaria y que la inversa de una matriz unitaria es unitaria.
  5. Revisa nuevamente la entrada y realiza todas las demostraciones faltantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Transformaciones ortogonales, isometrías y sus propiedades

Por Ayax Calderón

Introducción

En entradas anteriores hemos estudiado algunas transformaciones lineales especiales con respecto a la transformación adjunta asociada. Estudiamos, por ejemplo, las transformaciones normales que son aquellas que conmutan con su adjunta. El siguiente paso es estudiar las transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

Isometrías y transformaciones ortogonales

Definición. Sean $V_1,V_2$ espacios euclidianos con productos interiores $\langle \cdot, \cdot \rangle_1$ y $\langle \cdot, \cdot \rangle_2$, y con correspondientes normas $||\cdot||_1$ y $||\cdot||_2$. Una isometría entre $V_1$ y $V_2$ es un isomorfismo $T:V_1\to V_2$ tal que para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$

Por lo tanto, una isometría es una transformación lineal biyectiva que preserva el producto interior. El siguiente problema nos da una mejor idea de esta preservación.

Problema. Sea $T:V_1\to V_2$ un isomorfismo de espacios vectoriales. Las siguientes dos condiciones son equivalentes.

  1. $\langle T(x),T(y) \rangle_2 = \langle x,y \rangle_1 $ para cualesquiera $x,y\in V_1$.
  2. $||T(x)||_2=||x||_1$ para cualquier $x\in V_1$.

Solución. $(1)\Rightarrow (2).$ Tomando $y=x$ se obtiene
$$||T(x)||_2^2=||x||_1^2$$ y por lo tanto $||T(x)||_2=||x||_1$, lo cual muestra el inciso 2.

$(2) \Rightarrow (1).$ Usando la identidad de polarización y la linealidad de $T$, podemos mostrar que
\begin{align*}
\langle T(x), T(y) \rangle_2 &=\frac{||T(x)+T(y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&= \frac{||T(x+y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&=\frac{||x+y||_2^2-||x||_2^2 – ||y||_2^2}{2}=\langle x,y \rangle_1,
\end{align*} lo cual muestra 1.

$\square$

Observación. Si $T$ es una transformación como la del problema anterior, entonces $T$ es automáticamente inyectiva: si $T(x)=0$, entonces $||T(x)||_2=0$, de donde $||x||_1=0$ y por lo tanto $x=0$. Recuerda que si $T$ es transformación lineal y $\text{ker}(T)=\{0\}$, entonces $T$ es inyectiva.

Definición. Sea $V$ un espacio euclidiano. Diremos que una transformación lineal $T:V\to V$ es ortogonal si $T$ es una isometría de $V$ en $V$. En otras palabras, $T$ es ortogonal si $T$ es biyectiva y para cualesquiera $x,y\in V$ se tiene que $$\langle T(x), T(y) \rangle = \langle x,y \rangle.$$

Nota que la biyectividad de $T$ es consecuencia de la relación anterior, gracias a la observación. Por lo tanto $T$ es ortogonal si y sólo si $T$ preserva el producto interior.

Similarmente, diremos que una matriz $A\in M_n(\mathbb{R})$ es ortogonal si
$$A^tA=I_n.$$

Estas nociones de ortogonalidad parecen algo distintas entre sí, pero la siguiente sección ayudará a entender la conexión que existe entre ellas.

Ejemplo. La matriz $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es ortogonal, pues $$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\triangle$

Equivalencias de transformaciones ortogonales

Entendamos un poco más qué quiere decir que una matriz $A\in M_n(\mathbb{R})$ sea ortogonal. Supongamos que sus filas son $R_1,\dots,R_n$. Notemos que la entrada $(i,j)$ de la matriz $A^tA$ es precisamente el producto punto $\langle R_i, R_j \rangle$. De esta manera, pedir que $$A^tA=I_n$$ es equivalente a pedir que $$\langle R_i, R_j \rangle = \begin{cases} 1 &\text{si $i=j$}\\ 0 & \text{en otro caso.}\end{cases}.$$

Esto es exactamente lo mismo que pedir que los vectores $R_1,\ldots,R_n$ formen una base ortonormal de $\mathbb{R}^n$.

También, de la igualdad $A^tA=I_n$ obtenemos que $A$ y $^tA$ son inversas, de modo que también tenemos $^tAA=I_n$, de donde $^tA$ también es ortogonal. Así, las filas de $^tA$ también son una base ortonormal de $\mathbb{R}^n$, pero estas filas son precisamente las columnas de $A$. Por lo tanto, prácticamente hemos probado el siguiente teorema.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz y considera a $\mathbb{R}^n$ con el producto interior canónico. Las siguientes afirmaciones son equivalentes:

  1. $A$ es ortogonal.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  4. Para cualquier $x\in\mathbb{R}^n$ se tiene $$||Ax||=||x||.$$

Las afirmaciones restantes quedan como tarea moral. Tenemos un resultado muy similar para el caso de transformaciones lineales.

Teorema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal. Demuestra que las siguientes afirmaciones son equivalentes:

  1. $T$ es ortogonal, es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T=Id$.

Demostración.$(1) \Rightarrow (2).$ Haciendo la sustitución $x=y$.

$(2) \Rightarrow (3).$ Usando polarización (haz los detalles de tarea moral)

$(3) \Rightarrow (1).$ Pensemos que $2$ se satisface. Entonces

\begin{align*}
\langle T^*\circ T(x)-x,y \rangle&=\langle y, T^*(T(x)) \rangle-\langle x,y \rangle\\
&= \langle T(x),T(y) \rangle – \langle x,y \rangle=0
\end{align*}

para cualesquiera $x,y \in V$ y por lo tanto $T^*(T(x))=x$, lo que prueba $(4)$.

$(4) \Rightarrow (1).$ Si $(4)$ se satisface, entonces $T$ es biyectiva, con inversa $T^*$, por lo que bastará ver que se cumple $(3)$ (pues a su vez implica $(2)$. Notemos que para cualquier $x\in V$ tenemos: $$||T(x)||^2=\langle T(x),T(x) \rangle =\langle x,T^*(T(x)) \rangle=\langle x,x \rangle=||x||^2.$$ Se concluye el resultado deseado.

$\square$

Las transformaciones ortogonales forman un grupo

Las propiedades anteriores nos hablan de una transformación ortogonal. Sin embargo, al tomar un espacio vectorial $V$ y considerar todas las posibles transformaciones ortogonales, tenemos una estructura algebraica bonita: un grupo. Este es el contenido del siguiente teorema.

Teorema. Sea $V$ un espacio euclideano y $O(V)$ el conjunto de transformaciones ortogonales de $V$. Se tiene que $O(V)$ es un grupo bajo composición. En otras palabras, la composición de dos transformaciones ortogonales es una transformación ortogonal y la inversa de una transformación ortogonal es una transformación ortogonal.

Demostración. Veamos la cerradura por composición. Sean $T_1,T_2$ transformaciones lineales ortogonales de $V$. Entonces $T_1\circ T_2$ es lineal y además
$$||(T_1\circ T_2)(x)||=||T_1(T_2(x))||=||T_2(x)||=||x||$$
para todo $x\in V$. Por lo tanto $T_1\circ T_2$ es una transformación lineal ortogonal.

Análogamente tenemos que si $T$ es ortogonal, entonces
$$||x||=||T(T^{-1}(x))||=||T^{-1}(x)||$$
para todo $x\in V$, lo que muestra que $T^{-1}$ es ortogonal.

$\square$

Definición. A $O(V)$ se le conoce como el grupo ortogonal de $V$.

Más adelante…

En esta entrada definimos y estudiamos las transformaciones ortogonales. También hablamos de las matrices ortogonales. Dimos algunas caracterizaciones para este tipo de transformaciones. Vimos que las transformaciones ortogonales de un espacio vectorial forman un grupo $O(V)$.

Las transformaciones que fijan el producto interior también fijan la norma y las distancias, de modo que geométricamente son muy importantes. En cierto sentido, entender quiénes son las transformaciones ortogonales de un espacio vectorial nos ayuda a entender «de qué maneras podemos cambiarlo linealmente, pero sin cambiar su métrica». En las siguientes entradas entenderemos con más profundidad al grupo $O(\mathbb{R}^n)$, el cual nos dará un excelente ejemplo de este fenómeno.

Tarea moral

  1. Verifica que la matriz
    $$A=\begin{pmatrix}
    \frac{3}{5} & \frac{4}{5}\\
    -\frac{4}{5} & \frac{3}{5}
    \end{pmatrix}$$ es ortogonal.
  2. Sea $\beta$ una base ortnormal de un espacio euclidiano $V$ y sea $\beta’$ otra base de $V$. Sea $P$ la matriz de cambio de base de $\beta$ a $\beta’$. Demuestra que $\beta’$ es ortonormal si y sólo si $P$ es ortogonal.
  3. Termina las demostraciones de las caracterizaciones de matrices ortogonales y de transformaciones ortogonales.
  4. Demuestra que el producto de matrices ortogonales es también una matriz ortogonal.
  5. Encuentra todas las posibles transformaciones ortogonales de $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Moderna I: Propiedades de grupos y Definición débil de grupo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Cuando se estudian campos vectoriales u otras estructuras algebraicas primero se definen ciertas propiedades básicas y después, otras propiedades importantes que se desprenden de las primeras. Ahora, vamos a ver propiedades de los grupos. Dentro de los grupos mencionamos la existencia de un neutro, asociatividad e inverso. Pero de ahí se desprenden otras propiedades que vamos a usar como la cancelación, la unicidad de los neutros, etc.

Propiedades de grupos

Propiedades. Sea $(G,*)$ un grupo, entonces

  1. Para cualesquiera $x, a, b \in G$, se tiene que $$x*a = x*b \Rightarrow a = b,$$ también se vale cancelar por la derecha, $$a*x = b*x \Rightarrow a = b.$$ Estas propiedades son conocidas como las leyes de cancelación.
  2. El neutro en $(G,*)$ es único.
  3. Cada $a \in G$ tiene un único inverso y se denota por $a^{-1}$.
  4. Para toda $a \in G$, $(a^{-1})^{-1} = a$.

Demostración. 1. Sean $x,a,b \in G$.
Supongamos que $x*b = x*b$. Sea $\tilde{x} \in G$ inverso de $x$. Tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
\tilde{x} * (x * a) = \; & \tilde{x} * (x * b) & \text{ }\\
(\tilde{x} * x) * a = \; & (\tilde{x} * x) * b & \text{por la asociatividad}\\
e* a = \; & e * b & \text{por ser $\tilde{x}$ el inverso de $x$}\\
a = \;& b & \text{por ser $e$ el neutro}
\end{align*}$

La cancelación por la derecha es análoga y se deja como ejercicio.

2. Sean $e, e’ \in G$ neutros

$\begin{align*}
e \;{=}\; & e * e’ & \text{ por ser $e’$ un neutro}\\
{=}\; & e’ & \text{ por ser $e$ un neutro}\\
\end{align*}$

$\therefore \; e= \; e’$

3. Sea $a\in G$. Supongamos que $\hat{a}, \tilde{a} \in G$ son inversos de a, entonces:

$\begin{align*}
\hat{a} \;{=}\; & e * \hat{a} & \text{ por ser $e$ el neutro}\\
= \; &(\tilde{a} * a)* \hat{a} & \text{ por ser $\tilde{a}$ un inverso de $a$}\\
=\; & \tilde{a} * (a * \hat{a}) & \text{ por la asociatividad}\\
=\; & \tilde{a} * e & \text{por ser $\hat{a}$ un inverso de $a$}\\
=\; &\tilde{a} & \text{ por ser $e$ el neutro}
\end{align*}$

$\therefore \hat{a} = \tilde{a}$

4. Sea $a \in G$.
Como $(a^{-1})^{-1}$ es el inverso de $a^{-1}$ tenemos que

$a^{-1} * (a^{-1})^{-1} = e$

Como $a^{-1}$ es el inverso de $a$ tenemos que

$a^{-1} * a = e$

Así $a^{-1}*(a^{-1})^{-1} = a^{-1} *a$, entonces por la propiedad 1 podemos cancelar el elemento $a^{-1}$ por la izquierda y concluir que $(a^{-1})^{-1} = a$.

$\blacksquare$

Definición débil de grupo

Teorema. Sea $G$ un conjunto, $*$ una operación binaria en $G$. Supongamos que

  1. $*$ es asociativa,
  2. existe $e \in G$ tal que $e*a = a $ para toda $a \in G$ y
  3. $\forall a \in G$ existe $ \tilde{a} \in G$ tal que $\tilde{a}*a=e$,

entonces $(G,*)$ es un grupo. A partir de ahora, a las propiedades $2$ y $3$ de la definición débil de grupo las denotaremos como $2’$ y $3’$ respectivamente para dejar que los números $2$ y $3$ denoten las propiedades de la definición de grupo.

Demostración. Supongamos que $(G,*)$ cumple $1, 2’$ y $3’$.
Sea $a \in G$, por $3’$, existe $\tilde{a} \in G$ tal que $\tilde{a} * a = e$.
Tenemos que $\tilde{a}$ es un inverso izquierdo de $a$. Veamos primero que $\tilde{a}$ es también un inverso derecho de $a$, es decir que $a * \tilde{a} = e$.

$\begin{align*}
\tilde{a} * (a * \tilde{a}) \;=\;& (\tilde{a} * a) * \tilde{a} & \text{por la asociatividad}\\
= \; & e * \tilde{a} & \text{por la propiedad }3’\\
= \;& \tilde{a} & \text{ por la propiedad } 2’\\
\end{align*}$

$\Rightarrow \tilde{a} * (a * \tilde{a}) = \tilde{a}$.

Por $3’$ existe $b \in G$ tal que $b*\tilde{a}=e$. Multiplicando $ \tilde{a} * (a * \tilde{a}) = \tilde{a}$ a la izquierda por $b$ tenemos que

$\begin{align*}
\text{ }\\
\Rightarrow \\
\Rightarrow\\
\Rightarrow
\end{align*}$

$\begin{align*}
b * (\tilde{a} * (a * \tilde{a})) =\;& b * \tilde{a} & \text{ }\\
(b * \tilde{a}) * (a * \tilde{a}) = \;& b * \tilde{a} & \text{por la asociatividad}\\
e * (a * \tilde{a}) =\;& e & \text{ya que $b$ es un inverso izquierdo de $\tilde{a}$}\\
a * \tilde{a}=\;& e &\text{ya que $e$ es un neutro izquierdo.}
\end{align*}$

Así, $\tilde{a}$ es también un inverso derecho de $a$.

Por $2’$, $e*a=a$ para toda $a\in G$, es decir $e$ es un neutro izquierdo. Veamos ahora que $e$ también es un neutro derecho probando que $a * e = a$ para toda $a \in G$.

Sea $a \in G$, por $3’$ existe $\tilde{a} \in G$ tal que $\tilde{a} * a=e$, y por lo que acabamos de probar $a * \tilde{a} = e$. Usando estas igualdades y la propiedad asociativa tenemos que

$a * e = a * (\tilde{a} * a) = (a * \tilde{a}) * a = e * a$

y como $e$ es un neutro por la izquierda, $e * a = a$. Así $a * e = a$.

Por lo tanto $(G, *)$ es un grupo.

$\blacksquare$

Tarea moral

  1. Usando la Definición débil de grupo, determina cuáles de estos conjuntos son un grupo.
    • $G = \r \setminus \{-1\}$, $a*b := a+b+ab$.
    • $G = \r^*$, $a*b = |a|b$.
    • $G = \{r \in \mathbb{Q} \;|\; r = \frac{p}{q} \text{ con } (p,q)= 1 \text{ y } q \text{ impar}\}$, $a*b = a+b$ (la adición usual).
    • Sea $X$ un conjunto. Considera $G = \mathcal{P}(X)$ el conjunto potencia de $X$ con la operación binaria $A \triangle B = (A \cup B)\setminus (A \cap B)$ para todo $A,B \in \mathcal{P}(X)$.
  2. Muestra que $G = \r^*$ con la operación $a * b = |a| b$, tiene un neutro izquierdo $e$ y para cada elemento $a$ existe $\tilde{a}$ tal que $a * \tilde{a} = e$ ¿qué puedes concluir con respecto a la definición débil de un grupo?
  3. Para el conjunto $\mathcal{S}:= \{\bigstar, \blacktriangledown, \blacklozenge, \clubsuit \}$, considera las operaciones que creaste en la tarea moral de una entrada anterior.
    • Si definiste una operación tal que $(\cS, *)$ es un grupo, comprueba las propiedades vistas en esta entrada y verifica la definición débil.
    • Si no, observa si alguna de las propiedades analizadas se cumplen con tu operación.
  4. Si quieres conocer el grupo de transformaciones lee la sección 3.1.1 del libro Introducción analítica a la geometría de Javier Bracho (página 112 a la 115).
  5. Si quieres conocer el grupo diédrico puedes ver el video Dihedral Group de Socratica. El video está en inglés. De todas maneras, después usaremos el grupo diédrico, así que lo definiremos más adelante.

Más adelante…

En la siguiente entrada generalizaremos la propiedad de la asociatividad porque hasta ahora sólo la manejamos con tres elementos. Además, seguiremos formalizando conceptos que ya conocemos intuitivamente: definiremos qué es una potencia, escribiremos las leyes de los exponentes y las demostraremos.

Entradas relacionadas

Álgebra Moderna I: Definición de Grupos

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Ahora sí, comenzaremos con el tema de este curso. Después de estudiar las operaciones binarias por fin veremos para qué nos sirven. Los grupos son una estructura algebraica. Están constituidos por dos partes, un conjunto y una operación ¿Puedes imaginarte de qué tipo de operación estamos hablando?

Para motivarlo, veamos cómo resolvemos esta ecuación:

\begin{align*}
x+8 & = 5\\
(x + 8) + (-8) &= 5 + (-8)\\
x + 0 &= -3\\
x &= -3
\end{align*}

Al resolver la ecuación, formalmente estamos usando las siguientes propiedades:

  • Asociatividad
  • Inverso aditivo
  • Neutro

En ese mismo orden.

En esta entrada definiremos formalmente a los grupos y daremos muchos ejemplos para que te empapes de la definición. Revisaremos los ejemplos que vimos en entradas anteriores y determinaremos cuáles son un grupo y cuáles no.

¿Qué es un grupo?

Definición. Sea $G$ un conjunto con una operación binaria $*$. Decimos que $(G,*)$ es un grupo si

  1. La operación $*$ es asociativa, es decir, $(a * b)*c = a*(b*c) \quad \forall a,b,c \in G$
  2. Existe $e \in G$ tal que $e*a = a*e = a \quad \forall a \in G$.
    A $e$ se le llama neutro en $G$.
  3. Para toda $a \in G$ existe $\tilde{a} \in G$ tal que $a*\tilde{a} = \tilde{a}*a=e$.
    En este caso, $\tilde{a}$ se llama inverso de a.

Si además * es conmutativa, es decir $a*b = b*a \quad \forall a,b \in G$, decimos que $(G,*)$ es un grupo abeliano.

Nota. Sea $G$ conjunto con una operación binaria $*$:

  • Si $G \neq \emptyset$, $(G,*)$ se llama magma.
  • Si $G\neq \emptyset$ y se cumple 1, $(G,*)$ se llama semigrupo.
  • Si se cumplen 1 y 2, $(G,*)$ se llama monoide.

Repaso de ejemplos anteriores

Veamos de nuevo algunos ejemplos de las entradas anteriores y comprobemos si cumplen con la definición de grupo.

  • $G : = \z^+$, $a*b = \text{máx}\{a,b\}$.
    • En la entrada anterior vimos que $*$ es asociativa y conmutativa.
    • $1$ es el neutro.
      Demostración. $1*a = a*1 = \text{máx}\{1,a\} = a \quad \forall a \in \z^+$. $\blacksquare$
    • $2$ no tiene inverso.
      Demostración. $2*a = \text{máx}\{2,a\} \geq 2 \quad \forall a \in \z^+$, por lo que $2 * a \neq 1 \quad a \in \z^+$.

$\therefore (\z^+,*)$ NO es un grupo. $\blacksquare$

  • $G:= \z^+$, $a*b = a$.
    • No tiene neutro, si existiera $e \in \z^+$ neutro, entonces para toda $a\in\z^+$, por la definción de la operación $e*a = e$, pero la definición de neutro requiere que $e*a = a$. Entonces, esto implica que $e = a$ y como esto no es necesariamente cierto, pues $a$ es un entero positivo cualquiera, obtenemos una contradicción.

$\therefore (\z^+,*)$ NO es un grupo. $\blacksquare$

  • $(\cM_{2\times 2}(\z), +)$ es un grupo abeliano, la demostración queda como ejercicio.
  • $(\{ f \; | \; f:\r \to \r\}, \circ)$ no es un grupo, pues aunque $\mathrm{id}_{\r}$ es neutro, no todo elemento tiene inverso, como se ve en Álgebra Superior I.
  • $(S_3, \circ)$ es un grupo no abeliano. Generalizaremos este ejemplo más adelante y le llameremos grupo simétrico.
  • $\cS = \{2,4,6\}$ con la operación
$*$$2$$4$$6$
$2$$2$$4$$6$
$4$$4$$4$$6$
$6$$6$$6$$6$

Si observamos la tabla, podemos concluir que:

  • $2$ es neutro.
  • $4$ y $6$ no tienen inversos.

Por lo tanto, NO es un grupo.

$\blacksquare$

  • $\cS = \{2,4,6\}$ con la operación
$*$$2$$4$$6$
$2$$2$$2$$2$
$4$$4$$4$$4$
$6$$6$$6$$6$
  • No hay un neutro.

Como no hay neutro, ni siquiera tiene sentido pensar en la existencia de inversos. Por lo tanto, NO es un grupo.

$\blacksquare$

  • $\cS = \{1,-1\}$
$*$$1$$-1$
$1$$1$$-1$
$-1$$-1$$1$
  • El $1$ es el neutro.
  • La operación es asociativa.
  • $1$, $-1$ son sus propios inversos.
  • Además, la operación conmuta, porque la operación es el producto usual.

Por lo tanto es un grupo abeliano.

$\blacksquare$

  • $(\z, +)$ es un grupo.
  • Sea $K$ un campo y $K^* = K \setminus \{0_K\}$. Si consideramos $(K^*, \cdot)$ tenemos un grupo abeliano. Le quitamos el $0_K$ pues es el único número que no tiene inverso multiplicativo.
  • $\mathbb{S}’ = \{z \in \mathbb{C} \; |\; |z|= 1\}$. Es decir, los complejos con norma igual a $1$. Es un grupo abeliano con el producto.
Representación geométrica del conjunto.
  • Dentro de los complejos podemos considerar $$\Gamma_n = \left\{ \xi^k \; | \; 0 \leq k < n \right\},$$ con $\xi = e^{\frac{2\pi i}{n}}$. Geométricamente corresponden a los vértices de un polígono regular de $n$ lados y algebraicamente son las raíces $n$-ésimas de la unidad. Forman un grupo abeliano con el producto.
Representación geográfica del conjunto cuando $n= 6$.

Ejemplos importantes de matrices

Los siguientes son ejemplos de algunos grupos importantes. Recuérdalos porque son ejemplos que serán recurrentes en futuras entradas. Recuerda que no todas las matrices tienen inverso multiplicativo y que el producto de matrices no es conmutativo. Para refrescar tu memoria, puedes consultar las entradas de matrices inversas y operación de matrices.

  1. $$GL(n,\r) = \{A \in \cM_{n\times n}(\r) \;|\; \det A \neq 0\},$$ con el producto usual es un grupo no abeliano. Este par ordenado $(GL(n,r), \cdot)$ es conocido como el grupo lineal general.
  2. $$SL(n,\r) = \{A \in \cM_{n\times n}(\r) \;|\; \det A = 1\},$$ con el producto usual es un grupo no abeliano. Este es el grupo lineal especial.
  3. $$SO(n,\r) = \{A \in \cM_{n\times n}(\r) \; | \; AA^t = I_n, \; \det A = 1\},$$ con el producto usual es un grupo no abeliano. A éste se le conoce como grupo ortogonal especial.
  4. $$O(n, \r) = \{A \in \cM_{n\times n}(\r) \; |\; AA^t = I_n\},$$ con el producto usual es un grupo no abeliano. Este es conocido como el grupo ortogonal.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina, en cada uno de los siguientes casos, si el sistema descrito es grupo o no. En caso negativo, señala cuál o cuáles de los axiomas de grupo no se verifican. En caso afirmativo demuestra que es un grupo:
    • $G = \r \setminus \{-1\}$, $a*b := a+b+ab$.
    • $G = \r^*$, $a*b = |a|b$.
    • $G = \{r \in \mathbb{Q} \;|r\text{ se puede expresar como }\; r = \frac{p}{q} \text{ con } (p,q)= 1 \text{ y } q \text{ impar}\}$, $a*b = a+b$ (la adición usual).
    • Sea $X$ un conjunto. Considera $G = \mathcal{P}(X)$ el conjunto potencia de $X$ con la operación binaria $A \triangle B = (A \cup B)\setminus (A \cap B)$ para todo $A,B \in \mathcal{P}(X)$.
  2. Demuestra la siguientes afirmaciones referentes a grupos, dadas en los ejemplos anteriores:
    • $(\cM_{2\times 2}(\z), +)$ es un grupo abeliano.
    • $(S_3, \circ)$ es un grupo no abeliano.
    • $(\z, +)$ es un grupo.
    • $(K^*, \cdot)$ con $K$ un campo, es un grupo abeliano.
    • $(\Gamma_n, \cdot)$ es un grupo abeliano, con $\cdot$ el producto.
  3. Demuestrá por qué los ejemplos importantes de matrices son grupos no abelianos.

Más adelante…

Después de tantas definiciones y ejemplos, comenzaremos a ver más teoremas y demostraciones. En la siguiente entrada profundizaremos en las propiedades de grupos derivadas de su definición. Además, veremos un teorema conocido como la «Definición débil de Grupo».

Entradas relacionadas

Álgebra Lineal I: Introducción al curso, vectores y matrices

Por Leonardo Ignacio Martínez Sandoval

Introducción

Esta es la primer entrada correspondiente a las notas del curso Álgebra Lineal I. En esta serie de entradas, cubriremos todo el temario correspondiente al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Las notas están basadas fuertemente en el libro Essential Lineal Algebra with Applications de Titu Andreescu.

El curso se trata, muy a grandes rasgos, de definir espacios vectoriales y estudiar muchas de sus propiedades. Un espacio vectorial con el que tal vez estés familiarizado es $\mathbb{R}^n$, donde sus elementos son vectores con $n$ entradas. En él se pueden hacer sumas entrada a entrada, por ejemplo, si $n=3$ una suma sería

\begin{align*}
(5,-1,2)+(1,4,9)=(6,3,11).
\end{align*}

También se puede multiplicar un vector por un número real, haciéndolo entrada a entrada, por ejemplo,

\begin{align*}
3(1,5,-2,6)=(3,15,-6,18).
\end{align*}

El álgebra lineal estudia espacios vectoriales más generales que simplemente $\mathbb{R}^n$. Como veremos más adelante, hay muchos objetos matemáticos en los que se puede definir una suma y un producto escalar. Algunos ejemplos son los polinomios, ciertas familias de funciones y sucesiones. La ventaja de estudiar estos espacios desde el punto de vista del álgebra lineal es que todas las propiedades que probemos «en general», se valdrán para todos y cada uno de estos ejemplos.

Lo que haremos en la primer unidad del curso es entender muy a profundidad a $F^n$, una generalización de $\mathbb{R}^n$ en la que usamos un campo arbitrario $F$. También, entenderemos a las matrices en $M_{m,n}(F)$, que son arreglos rectangulares con entradas en $F$. La unidad culmina con estudiar sistemas de ecuaciones lineales y el método de reducción Gaussiana.

Más adelante veremos que estudiar estos conceptos primero es muy buena idea pues los espacios vectoriales más generales tienen muchas de las propiedades de $F^n$, y podemos entender a ciertas transformaciones entre ellos al entender a $M_{m,n}(F)$.

Breve comentario sobre campos

En este curso no nos enfocaremos en estudiar a profundidad las propiedades que tienen los campos como estructuras algebraicas. De manera pragmática, pensaremos que un campo $F$ consiste de elementos que se pueden sumar y multiplicar bajo propiedades bonitas:

  • La suma y el producto son asociativas, conmutativas, tienen neutro (que llamaremos $0$ y $1$ respectivamente y tienen inversos (i.e. se vale «restar» y «dividir»)
  • La suma y producto satisfacen la regla distributiva

De hecho, de manera muy práctica, únicamente usaremos a los campos $\mathbb{Q}$ de racionales, $\mathbb{R}$ de reales, $\mathbb{C}$ de complejos y $\mathbb{F}_2$, el campo de dos elementos $0$ y $1$. Este último sólo lo usaremos para observar que hay algunas sutilezas cuando usamos campos con una cantidad finita de elementos.

Para todos estos campos, supondremos que sabes cómo se suman y multiplican elementos. Si necesitas dar un repaso a estos temas, puedes echarle un ojo a las entradas del curso Álgebra Superior II, que también están aquí en el blog.

Nociones iniciales de álgebra lineal: escalares, vectores y matrices

Quizás te has encontrado con vectores y matrices en otros cursos. Por ejemplo, en geometría analítica es usual identificar a un vector $(x,y)$ con un punto en el plano cartesiano, o bien con una «flecha» que va del origen a ese punto. En álgebra lineal nos olvidaremos de esta interpretación por mucho tiempo. Será hasta unidades posteriores que tocaremos el tema de geometría de espacios vectoriales. Por el momento, sólo nos importan los vectores desde el punto de vista algebraico.

Tomemos un campo $F$. A los elementos de $F$ les llamaremos escalares. Para un entero positivo $n$, un vector $X$ en $F^n$ consiste de un arreglo de $n$ entradas $a_1,a_2,\ldots,a_n$ que pueden estar dispuestas en un vector fila $$X=(a_1, a_2,\ldots, a_n),$$ o bien un vector columna $$X=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}.$$

Para $i=1,\ldots,n$, a $a_i$ le llamamos la $i$-ésima coordenada o $i$-ésima entrada de $X$.

Como vectores, puedes pensar que el vector fila y el vector columna correspondientes son el mismo. Abajo veremos en qué sentido tenemos que pensarlos como diferentes. Aunque como vectores sean los mismos, los vectores columna tienen varias ventajas conceptuales en álgebra lineal.

Ejemplo 1. El vector $$X=\left(\frac{1}{2}, -1, \frac{2}{3}, 4\right).$$ tiene cuatro entradas, y todas ellas son números racionales. Por lo tanto, es un vector en $\mathbb{Q}^4$. Su primer entrada es $\frac{1}{2}$. Está escrito como vector fila, pero podríamos escribirlo también como vector columna: $$\begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{2}{3} \\ 4 \end{pmatrix}.$$

El vector $$Y=\left(\pi, \frac{3}{4}, 5, 6, \sqrt{2}\right)$$ es un vector fila en $\mathbb{R}^5$, pero no en $\mathbb{Q}^5$, pues no todas sus entradas son racionales. A $Y$ también lo podemos pensar como un vector en $\mathbb{C}$.

$\triangle$

Una matriz en $M_{m,n}(F)$ es un arreglo rectangular de elementos en $F$ dispuestos en $m$ filas y $n$ columnas como sigue:

$$A=\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\
\vdots & & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{pmatrix}.$$

Al escalar $a_{ij}$ le llamamos la entrada $(i,j)$ de $A$.

Para cada $i=1,\ldots,m$, definimos a la $i$-ésima fila de $A$ como el vector fila $$L_i=(a_{i1},a_{i2},\ldots,a_{in}),$$ y para cada $j=1,2,\ldots,n$ definimos a la $j$-ésima columna de $A$ como el vector columna $$C_j=\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}\end{pmatrix}.$$

Veamos algunas aclaraciones de notación. Cuando $m=n$, las matrices en $M_{m,n}(F)$ tienen la misma cantidad de filas que de columnas. En este caso simplemente usamos la notación $M_{n}(F)$ para ahorrarnos una letra, y si una matriz está en $M_{n}(F)$, le llamamos una matriz cuadrada. También, en ocasiones expresamos a una matriz en forma compacta diciendo cuántas filas y columnas tiene y usando la notación $A=[a_{ij}]$.

Ejemplo 2. Consideremos la matriz $A$ en $M_3(\mathbb{R})$ dada por $A=[a_{ij}]=[i+2j]$. Si queremos poner a $A$ de manera explícita, simplemente usamos la fórmula en cada una de sus entradas:

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2 & 1+2\cdot 3\\
2+2\cdot 1 & 2+2\cdot 2 & 2+2\cdot 3\\
3+2\cdot 1 & 3+2\cdot 2 & 3+2\cdot 3\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 & 7\\
4 & 6 & 8\\
5 & 7 & 9\\
\end{pmatrix}
\end{align*}

Esta es una matriz cuadrada. Sin embargo, la matriz $B$ en $M_{3,2}(\mathbb{R})$ con la misma regla $B=[b_{ij}]=[i+2j]$ no es una matriz cuadrada pues es

\begin{align*}
B=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2\\
2+2\cdot 1 & 2+2\cdot 2\\
3+2\cdot 1 & 3+2\cdot 2\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 \\
4 & 6 \\
5 & 7 \\
\end{pmatrix},
\end{align*}

la cual es una matriz con $3$ filas y $2$ columnas.

$\triangle$

Cualquier vector fila en $F^n$ lo podemos pensar como una matriz en $M_{1n}(F)$ y cualquier vector columna en $F^n$ lo podemos pensar como una matriz en $M_{n1}(F)$. En este sentido estos dos vectores sí serían distintos. Usualmente será claro si se necesita o no hacer la distinción.

Para que dos vectores o dos matrices sean iguales, tienen que serlo coordenada a coordenada.

Vectores y matrices especiales

Al vector en $F^n$ con todas sus entradas iguales al cero del campo $F$ le llamamos el vector cero y lo denotamos con $0$. El contexto nos ayuda a decidir si estamos hablando del escalar cero (el neutro aditivo del campo $F$) o del vector cero.

De manera similar, a la matriz en $M_{m,n}$ con todas sus entradas iguales al cero del campo $F$ le llamamos la matriz cero y la denotamos con $O_{m,n}$. Si $m=n$, la llamamos simplemente $O_n$.

Otra matriz especial que nos encontraremos frecuentemente es la matriz identidad. Para cada $n$, es la matriz $I_n$ en $M_n(F)$ tal que cada entrada de la forma $a_{ii}$ es igual a uno (el neutro multiplicativo de $F$) y el resto de sus entradas son iguales a $0$.

Cuando estamos trabajando en $M_n(F)$, es decir, con matrices cuadradas, hay otras familias de matrices que nos encontraremos frecuentemente. Una matriz $A=[a_{ij}]$ en $M_{n}(F)$:

  • Es diagonal si cuando $i\neq j$, entonces $a_{ij}=0$.
  • Es triangular superior si cuando $i>j$, entonces $a_{ij}=0$.
  • Y es triangular inferior si cuando $i<j$ entonces $a_{ij}=0$.

A las entradas de la forma $a_{ii}$ se les conoce como las entradas de la diagonal principal de la matriz. En otras palabras, $A$ es diagonal cuando sus únicas entradas no cero están en la diagonal principal. Es triangular superior cuando sus entradas por debajo de la diagonal principal son iguales a cero. Y de manera similar, es triangular inferior cuando sus entradas por encima de la diagonal principal son iguales a cero.

Ejemplo. La matriz $O_{3,2}$ de $M_{3,2}(\mathbb{Q})$ es la siguiente

$$O_{3,2}=\begin{pmatrix}
0 & 0 \\ 0& 0 \\ 0 & 0 \\
\end{pmatrix}$$

La matriz $I_4$ de $M_{4}(F)$ es la siguiente

$$I_4=\begin{pmatrix}
1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Esta matriz identidad es diagonal, triangular superior y triangular inferior. Una matriz diagonal distinta a la identidad podría ser la siguiente matriz en $M_3(\mathbb{Q})$:

$$\begin{pmatrix}
1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\
\end{pmatrix}.$$

Una matriz que es triangular superior, pero que no es diagonal (ni triangular inferior), podría ser la siguiente matriz en $M_4(\mathbb{R})$:

$$\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 0\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

$\triangle$

Operaciones de vectores y matrices

Si tenemos dos matrices $A=[a_{ij}]$ y $B=[b_{ij}]$ en $M_{m,n}(F)$, entonces podemos definir a la matriz suma $A+B$ como la matriz cuyas entradas son $[a_{ij}+b_{ij}]$, es decir, se realiza la suma (del campo $F$) entrada por entrada.

Ejemplo 1. Si queremos sumar a las matrices $A$ y $B$ en $M_{4}(\mathbb{R})$ dadas por $$A=\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 2\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

y $$B=\begin{pmatrix}
1 & 1 & -1 & -3\\ 0 & 1 & 1 & -2\\ 0& 0 & 1 & 1\\ 0 & 0 & 0 & 1
\end{pmatrix},$$

entonces hacemos la suma entrada por entrada para obtener:

$$A+B=\begin{pmatrix}
2 & 1+\sqrt{2} & 1 & -3+\sqrt{5}\\ 0 & 2 & 1+\sqrt{3} & 0\\ 0 & 0 & 2 & 1+\sqrt{2}\\ 0 & 0 & 0 & 2
\end{pmatrix}.$$

$\triangle$

Es muy importante que las dos matrices tengan la misma cantidad de filas y renglones. Insistiendo: si no coinciden la cantidad de filas o de columnas, entonces las matrices no se pueden sumar.

Si tenemos una matriz $A=[a_{ij}]$ en $M_{m,n}(F)$ y un escalar $c$ en $F$, podemos definir el producto escalar de $A$ por $c$ como la matriz $cA=[ca_{ij}]$, es decir, aquella que se obtiene al multiplicar cada una de las entradas de $A$ por el escalar $c$ (usando la multiplicación del campo $F$).

Ejemplo 2. Al tomar la siguiente matriz en $M_{2}(\mathbb{C})$ $$A=\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$ y el escalar $i$ en $\mathbb{C}$, se tiene que $$iA=\begin{pmatrix} i\cdot 1 &i\cdot i \\ i\cdot (-i) & i\cdot 1\end{pmatrix} = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}.$$

$\triangle$

Dada una matriz $A$, a la matriz $(-1)A$ le llamamos simplemente $-A$, y definimos $A-B:=A+(-B)$.

Como todo vector en $F^n$ se puede pensar como una matriz, estas operaciones también se pueden definir para vectores para obtener la suma de vectores y el producto escalar en vectores.

En álgebra lineal frecuentemente hablaremos de escalares, vectores y matrices simultáneamente. Cada que veas una una variable es importante que te preguntes de cuál de estos tipos de objeto es. También, cada que veas una operación (por ejemplo, una suma), es importante preguntarte si es una suma de escalares, vectores o matrices.

Muchas de las buenas propiedades de las operaciones de suma y producto en el campo $F$ también se cumplen para estas definiciones de suma y producto escalar de vectores y matrices.

Teorema. Sean $A,B,C$ matrices en $M_{m,n}(F)$ y $\alpha,\beta,\gamma$ escalares en $F$. Entonces la suma de matrices:

  • Es asociativa: $(A+B)+C = A+(B+C)$
  • Es conmutativa: $A+B=B+A$
  • Tiene neutro: $A+O_{m,n}=A=O_{m,n}+A$
  • Tiene inversos: $A+(-A)=O_{m,n}=(-A)+A$

Además,

  • La suma de escalares y el producto escalar se distribuyen: $(\alpha+\beta)A=\alpha A + \beta A$
  • La suma de matrices y el producto escalar se distribuyen: $\alpha(A+B)=\alpha A + \alpha B$
  • El producto escalar es homogéneo: $\alpha(\beta A) = (\alpha \beta) A$
  • El $1$ es neutral para el producto escalar: $1A = A$

Un teorema análogo se vale al cambiar matrices por vectores. La demostración de este teorema se sigue directamente de las propiedades del campo $F$. La notación de entradas nos ayuda mucha a escribir una demostración sin tener que escribir demasiadas entradas una por una. Veamos, como ejemplo, la demostración de la primera propiedad.

Demostración. Tomemos matrices $A=[a_{ij}]$, $B=[b_{ij}]$ y $C=[c_{ij}]$ en $M_{m,n}(F)$. Para mostrar que $$(A+B)+C=A+(B+C),$$ tenemos que mostrar que la entrada $(i,j)$ del lado izquierdo es igual a la entrada $(i,j)$ del lado derecho para cada $i=1,\ldots,m$ y $j=1,\ldots,n$.

Por definición de suma, $A+B=[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$. Por ello, y de nuevo por definicón de suma, $$(A+B)+C=[(a_{ij}+b_{ij})+c_{ij}].$$ De manera similar, $$A+(B+C)=[a_{ij}+(b_{ij}+c_{ij})].$$

Pero en $F$ la suma es asociativa, de modo que $$(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij}).$$

Con esto hemos demostrado que $(A+B)+C$ y $A+(B+C)$ son iguales entrada a entrada, y por lo tanto son iguales como matrices.

$\square$

La receta para demostrar el resto de las propiedades es la misma:

  1. Usar la definición de suma o producto por escalares para saber cómo es la entrada $(i,j)$ del lado izquierdo y del lado derecho.
  2. Usar las propiedades del campo $F$ para concluir que las entradas son iguales.
  3. Concluir que las matrices son iguales.

Para practicar las definiciones y esta técnica, la demostración del resto de las propiedades queda como tarea moral. A partir de ahora usaremos todas estas propiedades frecuentemente, así que es importante que las tengas en cuenta.

Base canónica de vectores y matrices

Cuando estamos trabajando en $F^n$, al vector $e_i$ tal que su $i$-ésima entrada es $1$ y el resto son $0$ lo llamamos el $i$-ésimo vector de la base canónica. Al conjunto de vectores $\{e_1,\ldots,e_n\}$ le llamamos la base canónica de $F^n$.

De manera similar, cuando estamos trabajando en $M_{m,n}(F)$, para cada $i=1,\ldots,m$ y $j=1,\ldots,n$, la matriz $E_{ij}$ tal que su entrada $(i,j)$ es $1$ y todas las otras entradas son cero se le conoce como la matriz $(i,j)$ de la base canónica. Al conjunto de todas estas matrices $E_{ij}$ le llamamos la base canónica de $M_{m,n}(F)$.

Ejemplo 1. El vector $e_2$ de $F^3$ es $(0,1,0)$. Ten cuidado, pues este es distinto al vector $e_2$ de $F^5$, que es $(0,1,0,0,0)$.

La matriz $E_{12}$ de $M_{2,3}(\mathbb{R})$ es $$\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

$\triangle$

Más adelante veremos el concepto de base en general, cuando hablemos de espacios vectoriales. Por el momento, la intuición para álgebra lineal es que una base es un conjunto que nos ayuda a generar elementos que nos interesan mediante sumas y productos escalares. Los siguientes resultados dan una intuición inicial de este fenómeno.

Teorema. Todo vector $X$ en $F^n$ se puede escribir de manera única de la forma $$X=x_1e_1+x_2e_2+\ldots+x_ne_n,$$ en donde $x_1,\ldots,x_n$ son escalares en $F$ y $\{e_1,\ldots,e_n\}$ es la base canónica.

Demostración. Si $X$ es un vector en $F^n$, entonces es de la forma $X=(x_1,x_2,\ldots,x_n)$. Afirmamos que las coordenadas de $X$ son los $x_i$ buscados.

En efecto, tomemos una $i=1,\ldots,n$. Como $e_i$ tiene $1$ en la $i$-ésima entrada y $0$ en el resto, entonces $x_ie_i$ es el vector con $x_i$ en la $i$-ésima entrada y $0$ en el resto. De esta forma, sumando entrada a entrada, tenemos

\begin{align*}
x_1e_1+x_2e_2+\ldots+x_ne_n&=\begin{pmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0\\ 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}\\
&=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X.
\end{align*}

Esto muestra la existencia.

Para demostrar la unicidad, un argumento análogo muestra que si tenemos otros escalares $y_1,\ldots,y_n$ que cumplan, entonces:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X=y_1e_1+\ldots+y_ne_n=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix},$$

de modo que $x_i=y_i$ para todo $i=1,\ldots,n$.

$\square$

Tenemos un resultado análogo para matrices.

Teorema. Toda matriz $A$ en $M_{m,n}(F)$ se puede escribir de manera única de la forma $$A=\sum_{i=1}^m \sum_{j=1}^n x_{ij} E_{ij},$$ en donde para $i=1,\ldots,m$ y $j=1,\ldots,n$, se tiene que $x_{ij}$ son escalares en $F$ y $E_{ij}$ son las matrices de la base canónica.

La demostración es muy similar a la del teorema anterior y como práctica queda como tarea moral.

Ejemplo 2. La matriz $$A=\begin{pmatrix} 2 & 0\\ 0 & -1 \\ 3 & 5 \end{pmatrix}$$ en $M_{3,2}(\mathbb{C})$ se expresa de manera única en términos de la base canónica como $$A=2E_{11}-1E_{22}+3E_{31}+5E_{32}.$$

$\square$

Más adelante…

En esta entrada dimos una breve introducción al álgebra lineal. Ya definimos la suma y el producto escalar para vectores y matrices. En la siguiente entrada hablaremos de otro producto que sucede en álgebra lineal: la de una matriz en $M_{m,n}(F)$ por un vector en $F^n$. Veremos que esta multiplicación nos permite pensar a una matriz $A$ como una función $\varphi_A:F^n\to F^m$ con ciertas propiedades especiales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Explica por qué no puedes sumar la matriz $I_5$ con la matriz $O_4$.
  • Muestra que la suma de dos matrices diagonales es diagonal. Haz lo mismo para matrices triangulares superiores y para matrices triangulares inferiores.
  • Termina de demostrar el teorema de propiedades de las operaciones de suma y producto escalar.
  • Explica por qué si una matriz es simultáneamente triangular superior y triangular inferior, entonces es diagonal.
  • Expresa a la siguiente matriz como combinación lineal de matrices de la base canónica:
    $$\begin{pmatrix}
    2 & \frac{1}{2} & 0 & 1\\
    3 & -3 & 3 & -3\\
    7 & -8 & -1 & 0
    \end{pmatrix}.$$
  • Demuestra el teorema de representación de matrices en términos de la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM».