Archivo de la etiqueta: distancia

Cálculo Diferencial e Integral III: Puntos críticos de campos escalares

Por Alejandro Antonio Estrada Franco

Introducción

En las unidades anteriores hemos desarrollado varias herramientas de la teoría de diferenciabilidad que nos permiten estudiar tanto a los campos escalares, como a los campos vectoriales. Hemos platicado un poco de las aplicaciones que esta teoría puede tener. En esta última unidad, profundizamos un poco más en cómo dichas herramientas nos permitirán hacer un análisis geométrico y cuantitativo de las funciones. Es decir, a partir de ciertas propiedades analíticas, hallaremos algunas cualidades de su comportamiento geométrico. En esta entrada estudiaremos una pregunta muy natural: ¿cuándo una función diferenciable alcanza su máximo o su mínimo? Para ello, necesitaremos definir qué quiere decir que algo sea un punto crítico de una función. Esto incluirá a los puntos más altos, los más bajos, local y globalmente y ciertos «puntos de quiebre» que llamamos puntos silla.

Introducción al estudio de los puntos críticos

Si tenemos un campo escalar $f:\mathbb{R}^n\to \mathbb{R}$, en muchas aplicaciones nos interesa poder decir cuándo alcanza sus valores máximos o mínimos. Y a veces eso sólo nos importa en una vecindad pequeña. La siguiente definición hace ciertas precisiones.

Definición. Sea $f:S\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}$ un campo escalar, y $\bar{a}\in S$.

  • Decimos que $f$ tiene un máximo absoluto (o máximo global) en $\bar{a}$ si $f(\bar{x})\leq f(\bar{a})$ para todo $\bar{x}\in S$. A $f(\bar{a})$ le llamamos el máximo absoluto (o máximo global) de $f$ en $S$.
  • Decimos que $f$ tiene un máximo relativo (o máximo local) en $\bar{a}$ si existe una bola abierta $B_{r}(\bar{a})$ tal que para todo $\bar{x}\in B_{r}(\bar{a})$ $f(\bar{x})\leq f(\bar{a})$.
  • Decimos que $f$ tiene un mínimo absoluto (o mínimo global) en $\bar{a}$ si $f(\bar{x})\geq f(\bar{a})$ para todo $\bar{x}\in S$. A $f(\bar{a})$ le llamamos el mínimo absoluto (o mínimo global) de $f$ en $S$.
  • Decimos que $f$ tiene un mínimo relativo (o mínimo local) en $\bar{a}$ si existe una bola abierta $B_{r}(\bar{a})$ tal que para todo $\bar{x}\in B_{r}(\bar{a})$ $f(\bar{x})\geq f(\bar{a})$.

En cualquiera de las situaciones anteriores, decimos que $f$ tiene un valor extremo (ya sea relativo o absoluto) en $\bar{a}$. Notemos que todo extremo absoluto en $S$ será extremo relativo al tomar una bola $B_{r}(\bar{a})$ que se quede contenida en $S$. Y de manera similar, todo extremo relativo se vuelve un extremo absoluto para la función restringida a la bola $B_{r}(\bar{a})$ que da la definición.

Usualmente, cuando no sabemos nada de una función $f$, puede ser muy difícil, si no imposible estudiar sus valores extremos. Sin embargo, la intuición que tenemos a partir de las funciones de una variable real es que deberíamos poder decir algo cuando la función que tenemos tiene cierta regularidad, por ejemplo, cuando es diferenciable. Por ejemplo, para funciones diferenciables $f:S\subseteq \mathbb{R}\to\mathbb{R}$ quizás recuerdes que si $f$ tiene un valor extremo en $\bar{a}\in S$, entonces $f'(\bar{a})=0$.

El siguiente teorema es el análogo en altas dimensiones de este resultado.

Teorema. Sea $f:S\subseteq \mathbb{R}^n\to \mathbb{R}$ un campo escalar. Supongamos que $f$ tiene un valor extremo en un punto interior $\bar{a}$ de $S$, y que $f$ es diferenciable en $\bar{a}$. Entonces el gradiente de $f$ se anula en $\bar{a}$, es decir, $$\triangledown f(\bar{a})=0.$$

Demostración. Demostraremos el resultado para cuando hay un máximo relativo en $\bar{a}$. El resto de los casos quedan como tarea moral. De la suposición, obtenemos que existe un $r>0$ tal que $f(\bar{x})\leq f(\bar{a})$ para todo $\bar{x}\in B_r(\bar{a})$. Escribamos $\bar{a}=(a_{1},\dots ,a_{n})$.

Para cada $i=1,\dots ,n$ tenemos:

\[ \frac{\partial f}{\partial x_{i}}(\bar{a})=\lim\limits_{\xi \to a_{i}}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}. \]

Además, ya que $f$ es diferenciable en $\bar{a}$ también se cumple

\[\lim\limits_{\xi \to a_{i}-}\frac{f(\xi e_{i})-f(a)}{\xi -a_{i}}=\lim\limits_{\xi \to a_{i}+}\frac{f(\xi e_i)-f(a)}{\xi -a_{i}}. \]

Dado que $f$ alcanza máximo en $\bar{a}$ tenemos que $f(\xi \hat{e}_{i})-f(\bar{a})\leq 0$. Para el límite por la izquierda tenemos $\xi-a_{i}\leq 0$, por lo tanto, en este caso

\[ \lim\limits_{\xi \to a_{i}-}\frac{f(\xi e_{i})-f(\bar{a})}{\xi -a_{i}}\geq 0.\]

Para el límite por la derecha tenemos $\xi-a_{i}\geq 0$, por lo cual

\[ \lim\limits_{\xi \to a_{i}+}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}\leq 0.\]

Pero la igualdad entre ambos límites dos dice entonces que

\[\frac{\partial f}{\partial x_{i}}(\bar{a}) =\lim\limits_{\xi \to a_{i}-}\frac{f(\xi \hat{e}_{i})-f(\bar{a})}{\xi -a_{i}}=0. \]

Por lo cual cada derivada parcial del campo vectorial es cero, y así el gradiente también lo es.

$\square$

Parece ser que es muy importante saber si para un campo vectorial su gradiente se anula, o no, en un punto. Por ello, introducimos dos nuevas definiciones.

Definición. Sea $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$ un campo escalar diferenciable en un punto $\bar{a}$ en $S$. Diremos que $f$ tiene un punto estacionario en $\bar{a}$ si $\triangledown f(\bar{a})=0$.

Definición. Sea $f:S\subseteq \mathbb{R}^n \to \mathbb{R}$ un campo escalar y tomemos $\bar{a}$ en $S$. Diremos que $f$ tiene un punto crítico en $\bar{a}$ si o bien $f$ no es diferenciable en $\bar{a}$, o bien $f$ tiene un punto estacionario en $\bar{a}$.

Si $f$ tiene un valor extremo en $\bar{a}$ y no es diferenciable en $\bar{a}$, entonces tiene un punto crítico en $\bar{a}$. Si sí es diferenciable en $\bar{a}$ y $\bar{a}$ es un punto interior del dominio, por el teorema de arriba su gradiente se anula, así que tiene un punto estacionario y por lo tanto también un punto crítico en $\bar{a}$. La otra opción es que sea diferenciable en $\bar{a}$, pero que $\bar{a}$ no sea un punto interior del dominio.

Observación. Los valores extremos de $f$ se dan en los puntos críticos de $f$, o en puntos del dominio que no sean puntos interiores.

Esto nos da una receta para buscar valores extremos para un campo escalar. Los puntos candidatos a dar valores extremos son:

  1. Todos los puntos del dominio que no sean interiores.
  2. Aquellos puntos donde la función no sea diferenciable.
  3. Los puntos la función es diferenciable y el gradiente se anule.

Ya teniendo a estos candidatos, hay que tener cuidado, pues desafortunadamente no todos ellos serán puntos extremos. En la teoría que desarrollaremos a continuación, profundizaremos en el entendimiento de los puntos estacionarios y de los distintos comportamientos que las funciones de varias variables pueden tener.

Intuición geométrica

Para entender mejor qué quiere decir que el gradiente de un campo escalar se anuele, pensemos qué pasa en términos geomértricos en un caso particular, que podamos dibujar. Tomemos un campo escalar $f:\mathbb{R}^2\to \mathbb{R}$. La gráfica de la función $f$ es la superficie en $\mathbb{R}^{3}$ que se obtiene al variar los valores de $x,y$ en la expresión $(x,y,f(x,y))$.

Otra manera de pensar a esta gráfica es como un conjunto de nivel. Si definimos $F(x,y,z)=z-f(x,y)$, entonces la gráfica es precisamente el conjunto de nivel para $F$ en el valor $0$, pues precisamente $F(x,y,z)=0$ si y sólo si $z=f(x,y)$.

Si $f$ alcanza un extremo en $(a,b)$, entonces $\triangledown f(a,b)=0$ por lo cual $\triangledown F (a,b,f(a,b))=(0,0,1)$. Así, el gradiente es paralelo al eje $z$ y por lo tanto es un vector normal a la superficie $F(x,y,z)=0$. Esto lo podemos reinterpretar como que el plano tangente a la superficie citada en el punto $(a,b,f(a,b))$ es horizontal.

Puntos silla

Cuando la función es diferenciable y el gradiente se anula, en realida tenemos pocas situaciones que pueden ocurrir. Sin embargo, falta hablar de una de ellas. Vamos a introducirla mediante un ejemplo.

Ejemplo. Consideremos $f(x,y)=xy$. En este caso

$$\frac{\partial f}{\partial x}=y\hspace{0.5cm}\textup{y}\hspace{0.5cm}\frac{\partial f}{\partial y}=x.$$

Si $(x,y)=(0,0)$, entonces las parciales se anulan, así que el gradiente también. Por ello, $(0,0)$ es un punto estacionario (y por lo tanto también crítico). Pero veremos a continuación que $f(0,0)=0$ no es máximo relativo ni mínimo relativo.

Tomemos $r>0$ abitrario y $\varepsilon= r/\sqrt{8}$. El punto $(\varepsilon ,\varepsilon)\in B_{r}(0)$ pues $\sqrt{\varepsilon ^{2}+\varepsilon ^{2}}$ es igual a $\sqrt{r^{2}/8\hspace{0.1cm}+\hspace{0.1cm}r^{2}/8}=r/2<r$. Análogamente, tenemos que el punto $(\varepsilon,-\varepsilon)\in B_{r}(0)$. Sin embargo $f(\varepsilon,-\varepsilon)=-r^{2}/8<0$, por lo que $0$ no es un mínimo local, también $f(\varepsilon,\varepsilon)=r^{2}/8>0$, por lo que $0$ tampoco es máximo local. En la Figura 1 tenemos un bosquejo de esta gráfica.

Figura 1

$\triangle$

Los puntos como los de este ejemplo tienen un nombre especial que definimos a continuación.

Definición. Sea $f:S\subseteq \mathbb{R}^n\to\mathbb{R}$ un campo escalar y $\bar{a}$ un punto estacionario de $f$. Diremos que $\bar{a}$ es un punto silla si para todo $r>0$ existen $\bar{u},\bar{v}\in B_{r}(\bar{a})$ tales que $f(\bar{u})<f(\bar{a})$ y $f(\bar{v})>f(\bar{a})$.

Determinar la naturaleza de un punto estacionario

Cuando tenemos un punto estacionario $\bar{a}$ de una función $f:\mathbb{R}^n\to \mathbb{R}$, tenemos diferenciabilidad de $f$ en $\bar{a}$. Si tenemos que la función es de clase $C^2$ en ese punto, entonces tenemos todavía más. La intuición nos dice que probablemente podamos decir mucho mejor cómo se comporta $f$ cerca de $\bar{a}$ y con un poco de suerte entender si tiene algún valor extremo o punto silla ahí, y bajo qué circunstancias.

En efecto, podemos enunciar resultados de este estilo. Por la fórmula de Taylor tenemos que

$$f(\bar{a}+\bar{y})=f(\bar{a})+\triangledown f (\bar{a}) \cdot y + \frac{1}{2}[\bar{y}]^tH(\bar{a})[\bar{y}]+||\bar{y}||^{2}E_{2}(\bar{a},\bar{y}),$$

en donde el error $||\bar{y}||^{2}E_{2}(\bar{a},\bar{y})$ se va a cero conforme $||\bar{y}||\to 0$. Recuerda que aquí $H(\bar{a})$ es la matriz hessiana de $f$ en $\bar{a}$. Como $f:\mathbb{R}^n\to \mathbb{R}$, se tiene que $H(\bar{a})\in M_n(\mathbb{R})$.

Para un punto estacionario $\bar{a}$ se cumple que $\triangledown f(\bar{a})=0$, así que de lo anterior tenemos

\[ f(\bar{a}+\bar{y})-f(\bar{a})=\frac{1}{2}[\bar{y}]^tH(\bar{a})[\bar{y}]+||\bar{y}||^{2}E_{2}(\bar{a},\bar{y}).\]

De manera heurística, dado que $\lim\limits_{||\bar{y}||\to 0}||\bar{y}||^{2}E_{2}(\bar{a},\bar{y})=0$, estamos invitados a pensar que el signo de $f(\bar{a}+\bar{y})-f(\bar{a})$ es el mismo que el la expresión $[\bar{y}]^tH(\bar{a})[\bar{y}]$. Pero como hemos platicado anteriormente, esto es una forma cuadrática en la variable $\bar{y}$, y podemos saber si es siempre positiva, siempre negativa o una mezcla de ambas, estudiando a la matriz hessiana $H(\bar{a})$.

Esta matriz es simétrica y de entradas reales, así que por el teorema espectral es diagonalizable mediante una matriz ortogonal $P$. Tenemos entonces que $P^tAP$ es una matriz diagonal $D$. Sabemos también que las entradas de la diagonal de $D$ son los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$ contados con la multiplicidad que aparecen en el polinomio característico.

Teorema. Sea $X$ una matriz simétrica en $M_n(\mathbb{R})$. Consideremos la forma bilineal $\mathfrak{B}(\bar{v})=[\bar{v}]^tX[\bar{v}]$. Se cumple:

  1. $\mathfrak{B}(\bar{v})>0$ para todo $\bar{v}\neq \bar{0}$ si y sólo si todos los eigenvalores de $X$ son positivos.
  2. $\mathfrak{B}(\bar{v})<0$ para todo $\bar{v}\neq \bar{0}$ si y sólo si todos los eigenvalores de $X$ son negativos.

Demostración. Veamos la demostración del inciso 1.

$\Rightarrow )$ Por la discusión anterior, existe una matriz ortogonal $P$ tal que $P^tXP$ es diagonal, con entradas $\lambda_1,\ldots,\lambda_n$ que son los eigenvalores de $X$. Así, en alguna base ortonormal $\beta$ tenemos $$\mathfrak{B}(\bar{v})=\sum_{i=1}^{n}\lambda _{i}a_{i}^{2}$$ donde $\bar{a}=(a_{1},\dots ,a_{n})$ es el vector $\bar{v}$ en la base $\beta$. Si todos los eigenvalores son positivos, claramente $\mathfrak{B}(\bar{v})>0$, para todo $\bar{v}\neq \bar{0}$.

$\Leftarrow )$ Si $\mathfrak{B}(\bar{v})>0$ para todo $\bar{v}\neq \bar{0}$ podemos elegir $\bar{v}$ como el vector $e_k$ de la base $\beta$. Para esta elección de $\bar{v}$ tenemos $\mathfrak{B}(\hat{e_{k}})=\lambda _{k}$, de modo que para toda $k$, $\lambda _{k}>0$.

El inciso $2$ es análogo y deja como tarea moral su demostración.

$\square$

A las formas cuadráticas que cumplen el primer inciso ya las habíamos llamado positivas definidas. A las que cumplen el segundo inciso las llamaremos negativas definidas.

Combinando las ideas anteriores, podemos formalmente enunciar el teorema que nos habla de cómo son los puntos estacionarios en términos de los eigenvalores de la matriz hessiana.

Teorema. Consideremos un campo escalar $f:S\subseteq \mathbb{R}^n\to \mathbb{R}$ de clase $C^2$ en un cierto punto interior $\bar{a}\in S$. Supongamos que $\bar{a}$ es un punto estacionario.

  1. Si todos los eigenvalores de $H(\bar{a})$ son positivos, $f$ tiene un mínimo relativo en $\bar{a}$.
  2. Si todos los eigenvalores de $H(\bar{a})$ son negativos, $f$ tiene un máximo relativo en $\bar{a}$.
  3. Si $H(\bar{a})$ tiene por lo menos un eigenvalor positivo, y por lo menos un eigenvalor negativo, $f$ tiene punto silla en $\bar{a}$.

Antes de continuar, verifica que los tres puntos anteriores no cubren todos los casos posibles para los eigenvalores. ¿Qué casos nos faltan?

Demostración: Definamos la forma bilineal $\mathfrak{B}(\bar{v})=[\bar{v}]^tH(\bar{a})[\bar{v}]$ y usemos el teorema de Taylor para escribir

\[ \begin{equation}\label{eq:taylor}f(\bar{a}+\bar{v})-f(\bar{a})=\frac{1}{2}\mathfrak{B}(\bar{v})+||\bar{v}||^{2}E(\bar{a},\bar{v}) \end{equation} \]

con

\[ \begin{equation}\label{eq:error}\lim\limits_{\bar{v}\to \bar{0}}E(\bar{a},\bar{v})=0. \end{equation} \]

En primer lugar haremos el caso para los eigenvalores positivos. Sean $\lambda _{1},\dots ,\lambda_{n}$ los eigenvalores de $H(\bar{a})$. Sea $\lambda _{*}=\min\{ \lambda _{1},\dots ,\lambda _{n}\}$. Si $\varepsilon <\lambda_{*}$, para cada $i=1,\dots , n$ tenemos $\lambda _{i}-\varepsilon>0$. Además, los números $\lambda _{i}-\varepsilon$ son los eigenvalores de la matriz $H(\bar{a})-\varepsilon I$, la cual es simétrica porque $H(\bar{a})$ lo es. De acuerdo con nuestro teorema anterior la forma cuadrática $[\bar{v}]^t(H(\bar{a})-\varepsilon I)[\bar{v}]$ es definida positiva, y por lo tanto

$$[\bar{v}]^tH(\bar{a})[\bar{v}]>[\bar{v}]^t\varepsilon I [\bar{v}] = \varepsilon ||\bar{v}||^2.$$

Esto funciona para todo $\varepsilon <\lambda _{*}$. Tomando $\varepsilon =\frac{1}{2}\lambda _{*}$ obtenemos $\mathfrak{B}(\bar{v})>\frac{1}{2}||\bar{v}||^2$ para todo $\bar{v}\neq \bar{0}$. Por el límite de \eqref{eq:error} tenemos que existe $r>0$ tal que $|E(\bar{a},\bar{v})|<\frac{1}{4}\lambda _{*}$ para $0<||\bar{v}||<r$. En este caso se cumple

\begin{align*}0&\leq ||\bar{v}||^{2}|E(\bar{a},\bar{v})|\\ &<\frac{1}{4}\lambda _{*}||\bar{v}||^{2}\\ &<\frac{1}{2}\mathfrak{B}(\bar{v}),\end{align*}

Luego por la ecuación \eqref{eq:taylor} tenemos
\begin{align*}
f(\bar{a}+\bar{v})-f(\bar{a})&=\frac{1}{2}\mathfrak{B}(\bar{v})+||\bar{v}||^{2}E(\bar{a},\bar{v})\\
&\geq \frac{1}{2}\mathfrak{B}(\bar{v})-||\bar{v}||^{2}|E(\bar{a},\bar{v})|\\
&>0.
\end{align*}

Esto muestra que $f$ tiene un mínimo relativo en $\bar{a}$ para la vecindad $B_{r}(\bar{a})$.

Para probar la parte $2$ se usa exactamente el mismo proceder sólo que hay que considerar la función $-f$, lo cual quedará hacer como tarea moral.

Revisemos pues la parte del punto silla, la parte $3$. Consideremos $\lambda _{1}$ y $\lambda _{2}$ dos eigenvalores de $H(\bar{a})$ tales que $\lambda _1 <0$ y $\lambda _2 >0$. Pongamos $\lambda _{*}=\min\{ |\lambda _{1}|,|\lambda _{2}|\}$. Notemos que para todo $\varepsilon \in (-\lambda _{*},\lambda _{*})$ se tiene que $\lambda _{1}-\varepsilon$ y $\lambda _{2}-\varepsilon$ son números de signos opuestos y además eigenvalores de la matriz $H(\bar{a})-\varepsilon I$. Tomando vectores en dirección de los eigenvectores $\bar{v}_1$ y $\bar{v}_2$ correspondientes a $\lambda_1$ y $\lambda_2$ notamos que $[\bar{v}](H(\bar{a})-\varepsilon I)[\bar{v}]^{t}$ toma valores positivos y negativos en toda vecindad de $\bar{0}$. Finalmente escojamos $r>0$ de tal manera que $|E(\bar{a},\bar{v})|<\frac{1}{4}\varepsilon$ cuando $0<||\bar{v}||<r$. Usando las mismas desigualdades del la parte $1$, vemos que para $\bar{v}$ en la dirección de $\bar{v}_1$ la diferencia $f(\bar{a}+\bar{v})-f(\bar{a})$ es negativa y para $\bar{v}$ en la dirección de $\bar{v}_2$ es positiva. Así, $f$ tiene un punto silla en $\bar{a}$.

$\square$

Hay algunas situaciones en las que el teorema anterior no puede ser usado. Por ejemplo, cuando los eigenvalores de $H(\bar{a})$ son todos iguales a cero. En dicho caso, el teorema no funciona y no nos dice nada de si tenemos máximo, mínimo o punto silla, y de hecho cualquiera de esas cosas puede pasar.

Ejemplos de análisis de puntos críticos

Ejemplo. Tomemos el campo escalar $f(x,y)=x^{2}+(y-1)^{2}$ y veamos cómo identificar y clasificar sus puntos estacionarios. Lo primero por hacer es encontrar el gradiente, que está dado por $$\triangledown f(x,y)=(2x,2(y-1)).$$ El gradiente se anula cuando $2x=0$ y $2(y-1)=0$, lo cual pasa si y sólo si $x=0$ y $y=1$. Esto dice que sólo hay un punto estacionario. Para determinar su naturaleza, encontraremos la matriz hessiana en este punto, así como los eigenvalores que tiene. La matriz hessiana es

\[ H(\bar{v})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x^{2}}(\bar{v}) & \frac{\partial ^{2}f}{\partial y \partial x}(\bar{v}) \\ \frac{\partial ^{2}f}{\partial x \partial y}(\bar{v}) & \frac{\partial ^{2}f}{\partial y^{2}}(\bar{v}) \end{pmatrix}=\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.\]

Notemos que la matriz hessiana ya está diagonalizada y es la misma para todo $\bar{v}$. En particular, en $(0,1)$ sus valores propios son $2$ y $2$, que son positivos. Así, la matriz hessiana es positiva definida y por lo tanto tenemos un mínimo local en el punto $(0,1)$. Esto lo confirma visualmente la gráfica de la Figura 2.

$\triangle$

Figura 2

Ejemplo. Veamos cómo identificar y clasificar los puntos estacionarios del campo escalar $f(x,y)=x^{3}+y^{3}-3xy.$ Localicemos primero los puntos estacionarios. Para ello calculemos el gradiente $\triangledown f(x,y)=(3x^{2}-3y,3y^{2}-3x)$. Esto nos dice que los puntos estacionarios cumplen el sistema de ecuaciones

\[\left\{ \begin{matrix} 3x^2-3y=0\\ 3y^2-3x=0.\end{matrix} \right.\]

Puedes verificar que las únicas soluciones están dadas son los puntos $(0,0)$ y $(1,1)$ (Sugerencia. Multiplica la segunda ecuación por $x$ y suma ambas). La matriz hessiana es la siguiente:

\[ H(x,y)=\begin{pmatrix} 6x & -3 \\ -3 & 6y \end{pmatrix}.\]

En $(x,y)=(0,0)$ la matriz hessiana es $\begin{pmatrix} 0 & -3 \\ -3 & 0 \end{pmatrix}$. Para encontar sus eigenvalores calculamos el polinomio característico

\begin{align*} \det(H(0,0)-\lambda I)&=\begin{vmatrix} -\lambda & -3 \\ -3 & -\lambda \end{vmatrix} \\ &= \lambda ^{2}-9.\end{align*}

Las raíces del polinomio característico (y por lo tanto los eigenvalores) son $\lambda _{1}=3$ y $\lambda _{2}=-3$. Ya que tenemos valores propios de signos distintos tenemos un punto silla en $(0,0)$.

Para $(x,y)=(1,1)$ la cuenta correspondiente de polinomio característico es

\begin{align*} \det(H(1,1)-\lambda I)&=\begin{vmatrix} 6-\lambda & -3 \\ -3 & 6-\lambda\end{vmatrix}\\ &=(6-\lambda )^{2}-9.\end{align*}

Tras manipulaciones algebraicas, las raíces son $\lambda _{1}=9$, $\lambda _{2}=3$. Como ambas son positivas, en $(1,1)$ tenemos un mínimo.

Puedes confirmar visualmente todo lo que encontramos en la gráfica de esta función, la cual está en la Figura 3.

$\triangle$

Figura 3

A continuación se muestra otro problema que se puede resolver con lo que hemos platicado. Imaginemos que queremos aproximar a la función $x^2$ mediante una función lineal $ax+b$. ¿Cuál es la mejor forma de elegir $a,b$ para que las funciones queden «cerquita» en el intervalo $[0,1]$? Esa cercanía se puede medir de muchas formas, pero una es pidiendo que una integral se haga chiquita.

Ejemplo. Determinemos qué valores de las constantes $a,b\in \mathbb{R}$ minimizan la siguiente integral

\[ \int_{0}^{1}[ax+b-x^2]^2 dx.\]

Trabajemos sobre la integral.

\begin{align*} \int_{0}^{1}[ax+b-x^{2}]^{2}dx&=\int_{0}^{1}(2abx+(a^{2}-2b)x^{2}-2ax^{3}+x^{4}+b^{2})dx\\ &=\int_{0}^{1}2abx\hspace{0.1cm}dx+\int_{0}^{1}(a^{2}-2b)x^{2}dx-\int_{0}^{1}2ax^{3}dx+\int_{0}^{1}x^{4}dx+\int_{0}^{1}b^{2}dx\\ &=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}. \end{align*}

Es decir, tenemos

\[ \int_{0}^{1}[ax+b-x^{2}]^{2}dx=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}.\]

Ahora definamos $f(a,b)=b^{2}+\frac{1}{3}a^{2}+ab-\frac{2}{3}b-\frac{1}{2}a+\frac{1}{5}$; basándonos en la forma general de la ecuación cuadrática de dos variables podemos comprobar rápidamente que $f$ nos dibuja una elipse en cada una de sus curvas de nivel. Continuando con nuestra misión, tenemos que $\triangledown f(a,b)=(\frac{2}{3}a+b-\frac{1}{2},2b+a-\frac{2}{3})$. Al resolver el sistema
\[\left\{\begin{matrix}\frac{2}{3}a+b-\frac{1}{2}=0\\2b+a-\frac{2}{3}=0,\end{matrix}\right.\]

hay una única solución $a=1$ y $b=-\frac{1}{6}$. Puedes verificar que la matriz hessiana es la siguiente en todo punto.

\[ H(\bar{v})=\begin{pmatrix} \frac{2}{3} & 1 \\ 1 & 2 \end{pmatrix}.\]

Para determinar si tenemos un mínimo, calculamos el polinomio característico como sigue

\begin{align*} \det(H(\bar{v})-\lambda I)&=\begin{vmatrix} \frac{2}{3}-\lambda & 1 \\ 1 & 2-\lambda \end{vmatrix}\\ &=\left( \frac{2}{3}-\lambda \right)\left( 2-\lambda\right)-1\\ &=\lambda ^{2}-\frac{8}{3}\lambda + \frac{1}{3}.\end{align*}

Esta expresión se anula para $\lambda _{1}=\frac{4+\sqrt{13}}{3}$ y $\lambda_{2}=\frac{4-\sqrt{13}}{3}$. Ambos son números positivos, por lo que en el único punto estacionario de $f$ tenemos un mínimo. Así el punto en el cual la integral se minimiza es $(a,b)=(1,-\frac{1}{6})$. Concluimos que la mejor función lineal $ax+b$ que aproxima a la función $x^2$ en el intervalo $[0,1]$ con la distancia inducida por la integral dada es la función $x-\frac{1}{6}$.

En la Figura 3 puedes ver un fragmento de la gráfica de la función $f(a,b)$ que nos interesa.

Figura 3. Gráfica de la función $f(a,b)$.

$\triangle$

Mas adelante…

La siguiente será nuestra última entrada del curso y nos permitirá resolver problemas de optimización en los que las variables que nos dan tengan ciertas restricciones. Esto debe recordarnos al teorema de la función implícita. En efecto, para demostrar los resultados de la siguiente entrada se necesitará este importante teorema, así que es recomendable que lo repases y recuerdes cómo se usa.

Tarea moral

  1. Identifica y clasifica los puntos estacionarios de los siguientes campos escalares:
    • $f(x,y)=(x-y+1)^{2}$
    • $f(x,y)=(x^{2}+y^{2})e^{-(x^{2}+y^{2})}$
    • $f(x,y)=\sin(x)\cos(x)$.
  2. Determina si hay constantes $a,b\in \mathbb{R}$ tales que el valor de la integral \[\int_{0}^{1}[ax+b-f(x)]^{2}dx \] sea mínima para $f(x)=(x^{2}+1)^{-1}$. Esto en cierto sentido nos dice «cuál es la mejor aproximación lineal para $\frac{1}{x^2+1}$».
  3. Este problema habla de lo que se conoce como el método de los mínimos cuadrados. Consideremos $n$ puntos $(x_{i},y_{i})$ en $\mathbb{R}^2$, todos distintos. En general es imposible hallar una recta que pase por todos y cada uno de estos puntos; es decir, hallar una función $f(x)=ax+b$ tal que $f(x_{i})=y_{i}$ para cada $i$. Sin embargo, sí es posible encontrar una función lineal $f(x)=ax+b$ que minimice el error cuadrático total que está dado por \[ E(a,b)=\sum_{i=1}^{n}[f(x_{i})-y_{i}]^{2}.\] Determina los valores de $a$ y $b$ para que esto ocurra. Sugerencia. Trabaja con el campo escalar $E(a,b)$ recuerda que los puntos $(x_{i},y_{i})$ son constantes.
  4. Completa la demostración de que si una matriz $X$ tiene puros eigenvalores negativos, entonces es negativa definida.
  5. En el teorema de clasificación de puntos estacionarios, muestra que en efecto si la matriz hessiana es negativa definida, entonces el punto estacionario es un punto en donde la función tiene máximo local.

Entradas relacionadas

Álgebra Lineal II: Ortogonalidad en espacios euclideanos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, cuando hablamos del espacio dual de un espacio vectorial, definimos qué quería decir que una forma lineal y un vector fueran ortogonales. Esa noción de ortogonalidad nos ayudó a definir qué era un hiperplano de un espacio vectorial y a demuestra que cualquier subespacio de dimensión $k$ de un espacio de dimensión $n$ podía ponerse como intersección de $n-k$ hiperplanos.

Hay otra noción de ortogonalidad en álgebra lineal que también ya discutimos en el primer curso: la ortogonalidad de parejas de vectores con respecto a un producto interior. En el primer curso vimos esta noción muy brevemente. Lo que haremos ahora es profundizar en esta noción de ortogonalidad. De hecho, gracias a las herramientas que hemos desarrollado podemos conectar ambas nociones de ortogonalidad.

Esta teoría la veremos de manera explícita en el caso real en la entrada. El caso en $\mathbb{C}$ queda esbozado en los ejercicios.

Definición de ortogonalidad

Comenzamos con las siguientes definiciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos vectores $x,y$ en $V$ son ortogonales (con respecto a $b$) si $b(x,y)=0$.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Sea $S$ un subconjunto de vectores de $V$. El conjunto ortogonal de $S$ (con respecto a $b$) consiste de todos aquellos vectores en $V$ que sean ortogonales a todos los vectores de $S$. En símbolos:

$$S^{\bot}:=\{v \in V : \forall s \in S, b(s,v)=0.$$

Es un buen ejercicio verificar que $S^\bot$ siempre es un subespacio de $V$. Finalmente, definimos la ortogonalidad de conjuntos.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $b$ una forma bilineal de $V$. Diremos que dos subconjuntos $S$ y $T$ son ortogonales (con respecto a $b$) si $S \subseteq T^{\bot}$.

En otras palabras, estamos pidiendo que todo vector de $S$ sea ortogonal a todo vector de $T$.

Observación. Si tenemos un espacio vectorial con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$, entonces tenemos la fórmula $$\norm{x+y}^2=\norm{x}^2+2\langle x,y\rangle +\norm{y}^2.$$

De esta forma, $x$ y $y$ son ortogonales si y sólo si $$\norm{x+y}^2= \norm{x}^2+\norm{y}^2.$$ Podemos pensar esto como una generalización del teorema de Pitágoras.

Descomposición en un subespacio y su ortogonal

Comenzamos esta sección con un resultado auxiliar.

Teorema. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$V=W\oplus W^\bot.$$

Demostración. Sea $\langle \cdot,\cdot \rangle$ el producto interior de $V$. Para demostrar la igualdad que queremos, debemos mostrar que $W$ y $W^\bot$ están en posición de suma directa y que $V=W+W^\bot$.

Para ver que $W$ y $W^\bot$ están en posición de suma directa, basta ver que el único elemento en la intersección es el $0$. Si $x$ está en dicha intersección, entonces $\langle x, x \rangle =0$, pues por estar en $W^\bot$ debe ser ortogonal a todos los de $W$, en particular a sí mismo. Pero como tenemos un producto interior, esto implica que $x=0$.

Tomemos ahora un vector $v\in V$ cualquiera. Definamos la forma lineal $f:W\to \mathbb{R}$ tal que $f(u)=\langle u, v \rangle$. Por el teorema de representación de Riesz aplicado al espacio vectorial $W$ y a su forma lineal $f$, tenemos que existe un (único) vector $x$ en $W$ tal que $f(u)=\langle u, x \rangle$ para cualquier $u$ en $W$.

Definamos $y=v-x$ y veamos que está en $W^\bot$. En efecto, para cualquier $u$ en $W$ tenemos:

\begin{align*}
\langle u, y\rangle &= \langle u, v-x \rangle\\
&=\langle u, v \rangle – \langle u , x \rangle\\
&=f(u)-f(u)\\
&=0.
\end{align*}

De esta manera, podemos escribir $v=x+y$ con $x\in W$ y $y\in W^\bot$.

$\square$

En particular, el teorema anterior nos dice que la unión disjunta de una base de $W$ y una base de $W^\bot$ es una base de $V$. Por ello, tenemos el siguiente corolario.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$\dim{W}+\dim{W^\bot}=\dim{V}.$$

Tenemos un corolario más.

Corolario. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. Entonces $$(W^\bot)^\bot=W.$$

Demostración. Tanto $W$ como $(W^\bot)^\bot$ son subespacios de $V$. Tenemos que $W\subseteq (W^\bot)^\bot$ pues cualquier elemento de $W$ es ortogonal a cualquier elemento de $W^\bot$. Además, por el corolario anterior tenemos:

\begin{align*}
\dim{W}+\dim{W^\bot}&=\dim{V}\\
\dim{W^\bot}+\dim{(W^\bot)^\bot}&=\dim{V}.
\end{align*}

De aquí se sigue que $\dim{W} = \dim{(W^\bot)^\bot}$. Así, la igualdad que queremos de subespacios se sigue si un subespacio está contenido en otro de la misma dimensión, entonces deben de ser iguales.

$\square$

Proyecciones ortogonales

Debido al teorema anterior, podemos dar la siguiente definición.

Definición. Sea $V$ un espacio euclideano y $W$ un subespacio de $V$. La proyección ortogonal hacia $W$ es la transformación lineal $p_W:V\to W$ tal que a cada $v$ en $V$ lo manda al único vector $p_W(v)$ tal que $x-p_W(v)$ está en $W^\bot$.

Dicho en otras palabras, para encontrar a la proyección de $v$ en $W$ debemos escribirlo de la forma $v=x+y$ con $x\in W$ y $y\in W^\bot$ y entonces $p_W(v)=x$.

Distancia a subespacios

Cuando definimos la distancia entre conjuntos que tienen más de un punto, una posible forma de hacerlo es considerando los puntos más cercanos en ambos conjuntos, o en caso de no existir, el ínfimo de las distancias entre ellos. Esto da buenas propiedades para la distancia. En particular, cuando queremos definir la distancia de un punto $x$ a un conjunto $S$ hacemos lo siguiente.

Definición. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $S$ un subconjunto de $V$ y $v$ un vector de $V$. Definimos la distancia de $v$ a $S$ como la menor posible distancia de $v$ hacia algún punto de $S$. En símbolos:

$$d(v,S):=\inf_{s\in S} d(v,s).$$

En general, puede ser complicado encontrar el punto que minimiza la distancia de un punto a un conjunto. Sin embargo, esto es más sencillo de hacer si el conjunto es un subespacio de un espacio con producto interior: se hace a través de la proyección al subespacio. Esto queda reflejado en el siguiente resultado.

Proposición. Sea $V$ un espacio euclideano con producto interior $\langle \cdot, \cdot \rangle$ de norma $\norm{\cdot}$. Sea $W$ un subespacio de $V$ y sea $v$ un vector en $V$. Entonces $$d(v,W)=\norm{v-p_W(v)}.$$

Más aún, $p_W(v)$ es el único punto en $W$ para el cual se alcanza la distancia mínima.

Demostración. Por el teorema de descomposición en un subespacio y su ortogonal, sabemos que podemos escribir $v=x+y$ con $x$ en $W$ y con $y$ en $W^\bot$.

Tomemos cualquier elemento $w$ en $W$. Tenemos que $x-w$ está en $W$ y que $y$ está en $W^\bot$. Así, usando el teorema de Pitágoras tenemos que:

\begin{align*}
\norm{v-w}^2&=\norm{y+(x-w)}^2\\
&=\norm{y}^2+\norm{x-w}^2\\
&\geq \norm{y}^2\\
&=\norm{v-x}^2.
\end{align*}

Esto muestra que $\norm{v-w}\geq \norm{v-x}$. Como $x\in W$, esto muestra que la distancia de $v$ a $W$ en efecto se alcanza con $x=p_W(v)$, pues cualquier otra distancia es mayor o igual.

La igualdad en la cadena anterior de alcanza si y sólo si $\norm{x-w}^2=0$, lo cual sucede si y sólo si $x=w$, como queríamos.

$\square$

Más adelante…

En la siguiente entrada recordaremos varias de las ventajas que tiene contar con una base de un espacio vectorial en la que cualesquiera dos vectores sean ortogonales entre sí. Y en la entrada después de esa, recordaremos algunas hipótesis bajo las cuales podemos garantizar encontrar una de esas bases.

Tarea moral

  1. Resuelve los siguientes ejercicios:
    1. Sea $\mathbb{R}^3$ con el producto interno canónico y $W=\{(0,0,a_3) : a_3 \in \mathbb{R} \}$. Encuentra a $W^{\bot}$ y define la proyección ortogonal $p_W$ hacia $W$.
    2. Encuentra el vector en $\text{Span}((1,2,1), (-1,3,-4))$ que sea el más cercano (respecto a la norma euclidiana) al vector $(-1,1,1)$.
  2. Sea $V$ un espacio euclidiano y $T : V \to V $ una transformación lineal tal que $T^2=T$. Prueba que T es una proyección ortogonal si y solo si para cualesquiera $x$ y $y$ en $V$ se tiene que $$\langle T(x),y\rangle =\langle x,T(y)\rangle.$$
  3. Resuelve los siguientes ejercicios:
    1. Demuestra que una proyección ortogonal reduce la norma, es decir, que si $T$ es una proyección ortogonal, entonces $\norm{T(v)}\leq \norm{v}$.
    2. Prueba que una proyección ortogonal únicamente puede tener como eigenvalores a $0$ ó a $1$.
  4. Demuestra que la composición de dos proyecciones ortogonales no necesariamente es una proyección ortogonal.
  5. En el teorema de descomposición, ¿es necesaria la hipótesis de tener un producto interior? ¿Qué sucede si sólo tenemos una forma bilineal, simétrica y positiva?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Adjunciones complejas y transformaciones unitarias

Por Ayax Calderón

Introducción

Lo que hemos trabajado en esta unidad tiene su análogo para espacios hermitianos. En esta entrada haremos una recapitulación de los resultados que demostramos en el caso real, pero ahora los enunciaremos para el caso complejo. Las demostraciones son similares al caso real, pero haremos el énfasis correspondiente cuando haya distinciones para el caso complejo.

Adjunciones en espacios hermitianos

Uno de los ejercicios de la entrada Dualidad y representación de Riesz en espacios euclideanos consiste en enunciar y demostrar el teorema de representación de Riesz para espacios hermitianos. Si recuerdas, eso es justo lo que se necesita para hablar de la adjunción, de modo que en espacios hermitianos también podemos definir la adjunción como sigue.

Definición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

En el caso real la matriz de la transformación adjunta en una base ortonormal era la transpuesta. En el caso complejo debemos tomar la transpuesta conjugada.

Proposición. Sea $V$ un espacio hermitiano con producto interior hermitiano $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Sea $\mathcal{B}$ una base ortonormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)=\text{Mat}_{\mathcal{B}}(T)^\ast.$$

La demostración queda como ejercicio.

Transformaciones unitarias e isometrías

En espacios hermitianos también podemos hablar de las transformaciones lineales que preservan la distancia: las isometrías. En el caso real, las isometrías de un espacio a sí mismo las llamábamos ortogonales, pero en el caso complejo usaremos otro nombre.

Definición. Sean $V_1, V_2$ espacios hermitianos sobre $\mathbb{C}$ con productos interiores hermitianos $\langle \cdot,\cdot \rangle_1,\langle \cdot,\cdot \rangle_2$. Diremos que una transformación lineal $T:V_1\to V_2$ es una isometría si es un isomorfismo de espacios vectoriales y para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$ Si $V_1$ $V_2$ son un mismo espacio hermitiano $V$, diremos que $T$ es una transformación unitaria.

Diremos que una matriz $A\in M_n(\mathbb{C})$ se dice unitaria si $AA^\ast=I_n$. Puede demostrarse que si una matriz $A$ es unitaria, entonces la transformación $X\mapsto AX$ también lo es. Así mismo, se puede ver que si $T$ es una transformación unitaria, entonces cualquier representación matricial en una base ortonormal es unitaria.

Equivalencias de matrices y transformaciones unitarias

Así como en el caso real, hay muchas maneras de pensar a las transformaciones y a las matrices unitarias. Puedes pensar en los siguientes resultados como los análogos a las descripciones alternativas en el caso real.

Teorema. Sea $T:V\to V$ una transformación lineal. Las siguientes afirmaciones son equivalentes:

  1. $T$ es unitaria es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T = Id$.

Teorema. Sea $A\in M_n(\mathbb{C})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es unitaria.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{C}^n$.
  4. Para cualquier $x\in \mathbb{C}^n$, se tiene que $$||Ax||=||x||$.

Propiedades de grupo y caracterización de unitarias

Así como en el caso real las transformaciones ortogonales forman un grupo bajo la composición, en el caso complejo las transformaciones unitarias también forman un grupo bajo la composición. Si hablamos de matrices unitarias, entonces forman un grupo bajo el producto de matrices. Es posible clasificar a las matrices unitarias así como se clasificó a las matrices ortogonales, sin embargo los resultados son notablemente más difíciles de expresar.

Más adelante…

En la siguiente entrada hablaremos de quiénes son las transformaciones complejas para las que se puede enunciar el teorema espectral en el caso complejo. Veremos el resultado correspondiente y haremos énfasis en las diferencias que debemos tomar en cuenta.

Tarea moral

  1. Demuestra que si $A$ es una matriz unitaria, entonces $|\det A|=1$.
  2. Prueba que para que una transformación lineal $T$ de un espacio hermitiano sea unitaria, basta que a los vectores de norma $1$ los mande a vectores de norma $1$.
  3. Describe las matrices $A\in M_n(\mathbb{C})$ que son simultaneamente diagonales y unitarias.
  4. Demuestra que el producto de dos matrices unitarias es una matriz unitaria y que la inversa de una matriz unitaria es unitaria.
  5. Revisa nuevamente la entrada y realiza todas las demostraciones faltantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Transformaciones ortogonales, isometrías y sus propiedades

Por Ayax Calderón

Introducción

En entradas anteriores hemos estudiado algunas transformaciones lineales especiales con respecto a la transformación adjunta asociada. Estudiamos, por ejemplo, las transformaciones normales que son aquellas que conmutan con su adjunta. El siguiente paso es estudiar las transformaciones lineales entre espacios euclidianos que preservan las distancias. Estas transformaciones son muy importantes, pues son aquellas transformaciones que además de ser lineales, coinciden con nuestra intuición de movimiento rígido. Veremos que esta condición garantiza que la transformación en cuestión preserva el producto interior de un espacio a otro.

Isometrías y transformaciones ortogonales

Definición. Sean $V_1,V_2$ espacios euclidianos con productos interiores $\langle \cdot, \cdot \rangle_1$ y $\langle \cdot, \cdot \rangle_2$, y con correspondientes normas $||\cdot||_1$ y $||\cdot||_2$. Una isometría entre $V_1$ y $V_2$ es un isomorfismo $T:V_1\to V_2$ tal que para cualesquiera $x,y\in V_1$ se cumple que $$\langle T(x), T(y) \rangle_2 = \langle x,y\rangle_1.$$

Por lo tanto, una isometría es una transformación lineal biyectiva que preserva el producto interior. El siguiente problema nos da una mejor idea de esta preservación.

Problema. Sea $T:V_1\to V_2$ un isomorfismo de espacios vectoriales. Las siguientes dos condiciones son equivalentes.

  1. $\langle T(x),T(y) \rangle_2 = \langle x,y \rangle_1 $ para cualesquiera $x,y\in V_1$.
  2. $||T(x)||_2=||x||_1$ para cualquier $x\in V_1$.

Solución. $(1)\Rightarrow (2).$ Tomando $y=x$ se obtiene
$$||T(x)||_2^2=||x||_1^2$$ y por lo tanto $||T(x)||_2=||x||_1$, lo cual muestra el inciso 2.

$(2) \Rightarrow (1).$ Usando la identidad de polarización y la linealidad de $T$, podemos mostrar que
\begin{align*}
\langle T(x), T(y) \rangle_2 &=\frac{||T(x)+T(y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&= \frac{||T(x+y)||_2^2-||T(x)||_2^2 – ||T(y)||_2^2}{2}\\
&=\frac{||x+y||_2^2-||x||_2^2 – ||y||_2^2}{2}=\langle x,y \rangle_1,
\end{align*} lo cual muestra 1.

$\square$

Observación. Si $T$ es una transformación como la del problema anterior, entonces $T$ es automáticamente inyectiva: si $T(x)=0$, entonces $||T(x)||_2=0$, de donde $||x||_1=0$ y por lo tanto $x=0$. Recuerda que si $T$ es transformación lineal y $\text{ker}(T)=\{0\}$, entonces $T$ es inyectiva.

Definición. Sea $V$ un espacio euclidiano. Diremos que una transformación lineal $T:V\to V$ es ortogonal si $T$ es una isometría de $V$ en $V$. En otras palabras, $T$ es ortogonal si $T$ es biyectiva y para cualesquiera $x,y\in V$ se tiene que $$\langle T(x), T(y) \rangle = \langle x,y \rangle.$$

Nota que la biyectividad de $T$ es consecuencia de la relación anterior, gracias a la observación. Por lo tanto $T$ es ortogonal si y sólo si $T$ preserva el producto interior.

Similarmente, diremos que una matriz $A\in M_n(\mathbb{R})$ es ortogonal si
$$A^tA=I_n.$$

Estas nociones de ortogonalidad parecen algo distintas entre sí, pero la siguiente sección ayudará a entender la conexión que existe entre ellas.

Ejemplo. La matriz $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ es ortogonal, pues $$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\triangle$

Equivalencias de transformaciones ortogonales

Entendamos un poco más qué quiere decir que una matriz $A\in M_n(\mathbb{R})$ sea ortogonal. Supongamos que sus filas son $R_1,\dots,R_n$. Notemos que la entrada $(i,j)$ de la matriz $A^tA$ es precisamente el producto punto $\langle R_i, R_j \rangle$. De esta manera, pedir que $$A^tA=I_n$$ es equivalente a pedir que $$\langle R_i, R_j \rangle = \begin{cases} 1 &\text{si $i=j$}\\ 0 & \text{en otro caso.}\end{cases}.$$

Esto es exactamente lo mismo que pedir que los vectores $R_1,\ldots,R_n$ formen una base ortonormal de $\mathbb{R}^n$.

También, de la igualdad $A^tA=I_n$ obtenemos que $A$ y $^tA$ son inversas, de modo que también tenemos $^tAA=I_n$, de donde $^tA$ también es ortogonal. Así, las filas de $^tA$ también son una base ortonormal de $\mathbb{R}^n$, pero estas filas son precisamente las columnas de $A$. Por lo tanto, prácticamente hemos probado el siguiente teorema.

Teorema. Sea $A\in M_n(\mathbb{R})$ una matriz y considera a $\mathbb{R}^n$ con el producto interior canónico. Las siguientes afirmaciones son equivalentes:

  1. $A$ es ortogonal.
  2. Las filas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  3. Las columnas de $A$ forman una base ortonormal de $\mathbb{R}^n$.
  4. Para cualquier $x\in\mathbb{R}^n$ se tiene $$||Ax||=||x||.$$

Las afirmaciones restantes quedan como tarea moral. Tenemos un resultado muy similar para el caso de transformaciones lineales.

Teorema. Sea $V$ un espacio euclidiano y $T:V\to V$ una transformación lineal. Demuestra que las siguientes afirmaciones son equivalentes:

  1. $T$ es ortogonal, es decir, $\langle T(x),T(y) \rangle = \langle x,y \rangle$ para cualesquiera $x,y\in V$.
  2. $||T(x)||=||x||$ para cualquier $x\in V$.
  3. $T^*\circ T=Id$.

Demostración.$(1) \Rightarrow (2).$ Haciendo la sustitución $x=y$.

$(2) \Rightarrow (3).$ Usando polarización (haz los detalles de tarea moral)

$(3) \Rightarrow (1).$ Pensemos que $2$ se satisface. Entonces

\begin{align*}
\langle T^*\circ T(x)-x,y \rangle&=\langle y, T^*(T(x)) \rangle-\langle x,y \rangle\\
&= \langle T(x),T(y) \rangle – \langle x,y \rangle=0
\end{align*}

para cualesquiera $x,y \in V$ y por lo tanto $T^*(T(x))=x$, lo que prueba $(4)$.

$(4) \Rightarrow (1).$ Si $(4)$ se satisface, entonces $T$ es biyectiva, con inversa $T^*$, por lo que bastará ver que se cumple $(3)$ (pues a su vez implica $(2)$. Notemos que para cualquier $x\in V$ tenemos: $$||T(x)||^2=\langle T(x),T(x) \rangle =\langle x,T^*(T(x)) \rangle=\langle x,x \rangle=||x||^2.$$ Se concluye el resultado deseado.

$\square$

Las transformaciones ortogonales forman un grupo

Las propiedades anteriores nos hablan de una transformación ortogonal. Sin embargo, al tomar un espacio vectorial $V$ y considerar todas las posibles transformaciones ortogonales, tenemos una estructura algebraica bonita: un grupo. Este es el contenido del siguiente teorema.

Teorema. Sea $V$ un espacio euclideano y $O(V)$ el conjunto de transformaciones ortogonales de $V$. Se tiene que $O(V)$ es un grupo bajo composición. En otras palabras, la composición de dos transformaciones ortogonales es una transformación ortogonal y la inversa de una transformación ortogonal es una transformación ortogonal.

Demostración. Veamos la cerradura por composición. Sean $T_1,T_2$ transformaciones lineales ortogonales de $V$. Entonces $T_1\circ T_2$ es lineal y además
$$||(T_1\circ T_2)(x)||=||T_1(T_2(x))||=||T_2(x)||=||x||$$
para todo $x\in V$. Por lo tanto $T_1\circ T_2$ es una transformación lineal ortogonal.

Análogamente tenemos que si $T$ es ortogonal, entonces
$$||x||=||T(T^{-1}(x))||=||T^{-1}(x)||$$
para todo $x\in V$, lo que muestra que $T^{-1}$ es ortogonal.

$\square$

Definición. A $O(V)$ se le conoce como el grupo ortogonal de $V$.

Más adelante…

En esta entrada definimos y estudiamos las transformaciones ortogonales. También hablamos de las matrices ortogonales. Dimos algunas caracterizaciones para este tipo de transformaciones. Vimos que las transformaciones ortogonales de un espacio vectorial forman un grupo $O(V)$.

Las transformaciones que fijan el producto interior también fijan la norma y las distancias, de modo que geométricamente son muy importantes. En cierto sentido, entender quiénes son las transformaciones ortogonales de un espacio vectorial nos ayuda a entender «de qué maneras podemos cambiarlo linealmente, pero sin cambiar su métrica». En las siguientes entradas entenderemos con más profundidad al grupo $O(\mathbb{R}^n)$, el cual nos dará un excelente ejemplo de este fenómeno.

Tarea moral

  1. Verifica que la matriz
    $$A=\begin{pmatrix}
    \frac{3}{5} & \frac{4}{5}\\
    -\frac{4}{5} & \frac{3}{5}
    \end{pmatrix}$$ es ortogonal.
  2. Sea $\beta$ una base ortnormal de un espacio euclidiano $V$ y sea $\beta’$ otra base de $V$. Sea $P$ la matriz de cambio de base de $\beta$ a $\beta’$. Demuestra que $\beta’$ es ortonormal si y sólo si $P$ es ortogonal.
  3. Termina las demostraciones de las caracterizaciones de matrices ortogonales y de transformaciones ortogonales.
  4. Demuestra que el producto de matrices ortogonales es también una matriz ortogonal.
  5. Encuentra todas las posibles transformaciones ortogonales de $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Problemas de bases ortogonales, Fourier y proceso de Gram-Schmidt

Por Blanca Radillo

Introducción

Durante las últimas clases hemos visto problemas y teoremas que nos demuestran que las bases ortogonales son extremadamente útiles en la práctica, ya que podemos calcular fácilmente varias propiedades una vez que tengamos a nuestra disposición una base ortogonal del espacio que nos interesa. Veamos más problemas de bases ortogonales y otros resultados que nos permitirán reforzar estas ideas.

Problemas resueltos de bases ortogonales y proyecciones

Para continuar con este tema, veremos que las bases ortogonales nos permiten encontrar de manera sencilla la proyección de un vector sobre un subespacio. Primero, recordemos que si $V=W\oplus W_2$, para todo $v\in V$ podemos definir su proyección en $W$, que denotamos $\pi_W(v)$, como el único elemento en $W$ tal que $v-\pi_W(v) \in W_2$.

Debido a las discusiones sobre bases ortogonales, no es difícil ver que si $\langle w,u \rangle =0$ para todo $w\in W$, entonces $u\in W_2$. Como consecuencia de esto, tenemos el siguiente resultado:

Teorema. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior $\langle \cdot , \cdot \rangle$, y sea $W$ un subespacio de $V$ de dimensión finita. Sea $v_1,\cdots,v_n$ una base ortogonal de $W$. Entonces para todo $v\in V$ tenemos que

$\pi_W(v)=\sum_{i=1}^n \frac{\langle v,v_i \rangle}{\norm{v_i}^2} v_i .$

Demostración. Escribimos $v$ como $v=\pi_W(v)+u$ con $u\in W_2$. Por la observación previa al teorema, $\langle u,v_i \rangle =0$ para todo $i$. Además existen $a_1,\cdots,a_n$ tales que $\pi_W(v)=a_1 v_1+\cdots+a_n v_n$. Entonces

\begin{align*}
0 &= \langle u,v_i \rangle =\langle v,v_i \rangle – \langle \pi_W(v),v_i \rangle \\
&= \langle v,v_i \rangle – \sum_{j=1}^n a_j \langle v_j,v_i \rangle \\
&= \langle v,v_i \rangle – a_i \langle v_i,v_i \rangle,
\end{align*}

porque $v_1,\cdots,v_n$ es una base ortogonal. Por lo tanto, para todo $i$, obtenemos

$a_i=\frac{\langle v,v_i \rangle}{\norm{v_i}^2}.$

$\square$

Distancia de un vector a un subespacio y desigualdad de Bessel

En la clase de ayer, vimos la definición de distancia entre dos vectores. También se puede definir la distancia entre un vector y un subconjunto como la distancia entre el vector y el vector «más cercano» del subconjunto, en símbolos:

$d(v,W)=\min_{x\in W} \norm{x-v}.$

Dado que $x\in W$, $x-\pi_W(v) \in W$, y por definición de proyección $v-\pi_W(v) \in W_2$, entonces

\begin{align*}
\norm{x-v}^2 &=\norm{(x-\pi_W(v))+(\pi_W(v)-v)}^2 \\
&= \norm{x-\pi_W(v)}^2+2\langle x-\pi_W(v),\pi_W(v)-v \rangle+\norm{\pi_W(v)-v}^2 \\
&= \norm{x-\pi_W(v)}^2+\norm{\pi_W(v)-v}^2\\
&\geq \norm{\pi_W(v)-v}^2.
\end{align*}

Y dado que la proyección pertenece a $W$, la desigualdad anterior muestra que la proyección es precisamente el vector en $W$ con el que $v$ alcanza la distancia a $W$. En conclusión, $$d(v,W)=\norm{\pi_W(v)-v}.$$

Teorema. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interior $\langle \cdot , \cdot \rangle$, y sea $W$ un subespacio de $V$ de dimensión finita. Sea $v_1,\ldots,v_n$ una base ortonormal de $W$. Entonces para todo $v\in V$ tenemos que

$\pi_W(v)=\sum_{i=1}^n \langle v,v_i \rangle v_i,$

y

\begin{align*}
d(v,W)^2&=\norm{v-\sum_{i=1}^n \langle v,v_i \rangle v_i }^2\\
&=\norm{v}^2-\sum_{i=1}^n \langle v,v_i \rangle^2.
\end{align*}

En particular

$\sum_{i=1}^n \langle v,v_i \rangle^2\leq \norm{v}^2.$

A esta última desigualdad se le conoce como desigualdad de Bessel.

Demostración. Por el teorema anterior y dado que $v_1,\cdots,v_n$ es una base ortonormal, obtenemos la primera ecuación. Ahora, por Pitágoras,

$d(v,W)^2=\norm{v-\pi_W(v)}^2=\norm{v}^2-\norm{\pi_W(v)}^2.$

Por otro lado, tenemos que

\begin{align*}
\norm{\pi_W(v)}^2 &=\norm{\sum_{i=1}^n \langle v,v_i \rangle v_i}^2 \\
&= \sum_{i,j=1}^n \langle \langle v,v_i \rangle v_i, \langle v,v_j \rangle v_j \rangle \\
&= \sum_{i,j=1}^n \langle v,v_i \rangle \langle v,v_j \rangle \langle v_i,v_j \rangle \\
&=\sum_{i=1}^n \langle v,v_i \rangle^2.
\end{align*}

Por lo tanto, se cumple la igualdad de la distancia. Finalmente como $d(v,W)^2 \geq 0$, inmediatamente tenemos la desigualdad de Bessel.

$\square$

Veamos ahora dos problemas más en los que usamos la teoría de bases ortonormales.

Aplicación del proceso de Gram-Schmidt

Primero, veremos un ejemplo más del uso del proceso de Gram-Schmidt.

Problema. Consideremos $V$ como el espacio vectorial de polinomios en $[0,1]$ de grado a lo más $2$, con producto interior definido por $$\langle p,q \rangle =\int_0^1 xp(x)q(x) dx.$$

Aplica el algoritmo de Gram-Schmidt a los vectores $1,x,x^2$.

Solución. Es fácil ver que ese sí es un producto interior en $V$ (tarea moral). Nombremos $v_1=1, v_2=x, v_3=x^2$. Entonces

$$e_1=\frac{v_1}{\norm{v_1}}=\sqrt{2}v_1=\sqrt{2},$$

ya que $$\norm{v_1}^2=\int_0^1 x \, dx=\frac{1}{2}.$$

Sea $z_2=v_2-\langle v_2,e_1 \rangle e_1$. Calculando, $$\langle v_2,e_1 \rangle=\int_0^1 \sqrt{2}x^2 dx=\frac{\sqrt{2}}{3}.$$ Entonces $z_2=x-\frac{\sqrt{2}}{3}\sqrt{2}=x-\frac{2}{3}.$ Esto implica que

$e_2=\frac{z_2}{\norm{z_2}}=6\left(x-\frac{2}{3}\right)=6x-4.$

Finalmente, sea $z_3=v_3-\langle v_3,e_1\rangle e_1 -\langle v_3,e_2 \rangle e_2$. Haciendo los cálculos obtenemos que

$z_3=x^2-\left(\frac{\sqrt{2}}{4}\right)\sqrt{2}-\left(\frac{1}{5}\right)(6x-4)$

$z_3=x^2-\frac{6}{5}x+\frac{3}{10}.$

Por lo tanto

$e_3=\frac{z_3}{\norm{z_3}}=10\sqrt{6}(x^2-\frac{6}{5}x+\frac{3}{10}).$

$\triangle$

El teorema de Plancherel y una fórmula con $\pi$

Finalmente, en este ejemplo, usaremos técnicas de la descomposición de Fourier para solucionar un problema bonito de series.

Problema. Consideremos la función $2\pi-$periódica $f:\mathbb{R}\rightarrow \mathbb{R}$ definida como $f(0)=f(\pi)=0,$ $f(x)=-1-\frac{x}{\pi}$ en el intervalo $(-\pi,0)$, y $f(x)=1-\frac{x}{\pi}$ en el intervalo $(0,\pi)$.

Problemas de bases ortogonales: Aplicando el teorema de Plancherel para una fórmula que involucra a pi.
Gráfica de la función $f$.

Usa el teorema de Plancherel para deducir las identidades de Euler

\begin{align*}
\sum_{n=1}^\infty \frac{1}{n^2} &= \frac{\pi^2}{6},\\
\sum_{n=0}^\infty \frac{1}{(2n+1)^2} & = \frac{\pi^2}{8}.
\end{align*}

Solución. Notemos que no sólo es $2\pi-$periódica, también es una función impar, es decir, $f(-x)=-f(x)$. Por lo visto en la clase del miércoles pasado tenemos que calcular

$a_0(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$

$a_k(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(kx) dx,$

$b_k(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)sen(kx) dx.$

Para no hacer más larga esta entrada, la obtención de los coeficientes de Fourier se los dejaremos como un buen ejercicio de cálculo. Para hacer las integrales hay que separar la integral en cada uno de los intervalos $[-\pi,0]$ y $[0,\pi]$ y en cada uno de ellos usar integración por partes.

El resultado es que para todo $k\geq 1$, $$a_0=0, a_k=0, b_k=\frac{2}{k\pi}.$$

Entonces por el teorema de Plancherel,

\begin{align*}
\sum_{k=1}^\infty \frac{4}{k^2\pi^2} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx \\
&= \frac{1}{\pi} \left( \int_{-\pi}^0 \left(1+\frac{x}{\pi}\right)^2 dx + \int_0^\pi \left(1-\frac{x}{\pi}\right)^2 dx \right) \\
&= \frac{2}{3},
\end{align*}

teniendo que $$\sum_{k=1}^\infty \frac{1}{k^2} =\frac{2}{3}\frac{\pi^2}{4}=\frac{\pi^2}{6}.$$

Ahora para obtener la otra identidad de Euler, notemos que

\begin{align*}
\sum_{n=0}^\infty \frac{1}{(2n+1)^2} &= \sum_{n=1}^\infty \frac{1}{n^2} – \sum_{n=1}^\infty \frac{1}{(2n)^2} \\
&= \frac{\pi^2}{6}-\frac{\pi^2}{4\cdot6}= \frac{\pi^2}{8}.
\end{align*}

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»