Archivo de la etiqueta: diagonalizable

Álgebra Lineal I: Aplicaciones del teorema espectral, bases ortogonales y más propiedades de transformaciones lineales

Introducción

Hoy es la última clase del curso. Ha sido un semestre difícil para todas y todos. El quedarnos en casa, obligados a buscar alternativas digitales que sean de fácil acceso para la mayoría de las personas, aprender a realizar toda nuestra rutina diaria en un mismo espacio; sin dudarlo, un semestre lleno de retos que de una u otra manera, haciendo prueba y error, hemos aprendido a sobrellevar.

El día de hoy terminaremos con el tema de teoría espectral. Veremos algunos problemas donde usaremos las técnicas de búsqueda de eigenvalores y eigenvectores, así como aplicaciones de uno de los teoremas más importante: el Teorema Espectral.

Matrices simétricas, matrices diagonalizables

En entradas anteriores hemos discutido sobre qué condiciones me garantizan que una matriz A es diagonalizable. No volveremos a repetir cuál es la definición de matriz diagonalizable ya que en múltiples ocasiones lo hicimos.

Sabemos que una matriz simétrica en M_n(\mathbb{R}) siempre es diagonalizable, gracias al teorema espectral, pero el siguiente problema nos ilustra que si cambiamos de campo F, no tenemos la garantía de que las matrices simétricas en M_n(F) también lo sean.

Problema. Demuestra que la matriz simétrica con coeficientes complejos

A=\begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}

no es diagonalizable.

Solución. Por la primera proposición de la clase «Eigenvalores y eigenvectores de transformaciones y matrices», si A fuese diagonalizable, es decir, que existe una matriz invertible P y una diagonal D tal que A=P^{-1}DP, entonces A y D tienen los mismos eigenvalores. Entonces, encontremos los eigenvalores de A: buscamos \lambda \in \mathbb{C} tal que \text{det}(\lambda I-A)=0,

    \begin{align*}\text{det}(\lambda I-A)&=\begin{vmatrix} \lambda -1 & -i \\ i & \lambda +1 \end{vmatrix} \\&=(\lambda-1)(\lambda+1)-i^2=\lambda^2 -1+1 \\&=\lambda^2=0.\end{align*}

Por lo tanto, el eigenvalor con multiplicidad 2 de A (y también el eigenvalor de D) es \lambda =0. Si D es de la forma

D=\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix},

es fácil ver (y calcular) que sus eigenvalores son a y b, pero por lo anterior, podemos concluir que a=b=0, y por lo tanto D es la matriz cero. Si fuese así, A=P^{-1}DP=0, contradiciendo la definición de A.

\square

Problema. Sea A una matriz simétrica con entradas reales y supongamos que A^k=I para algún entero positivo k. Prueba que A^2=I.

Solución. Dado que A es simétrica y con entradas reales, todos sus eigenvalores son reales. Más aún son k-raíces de la unidad, entonces deben ser \pm 1. Esto implica que todos los eigenvalores de A^2 son iguales a 1. Dado que A^2 también es simétrica, es diagonalizable y, dado que sus eigenvalores son iguales a 1, por lo tanto A^2=I.

\square

Más propiedades de transformaciones lineales y bases ortogonales

En otras clases como Cálculo, Análisis, hablamos de funciones continuas, discontinuas, acotadas, divergentes; mientras que en este curso nos hemos enfocado únicamente en la propiedad de linealidad de las transformaciones. Si bien no es interés de este curso, podemos adelantar que, bajo ciertas condiciones del espacio V, podemos tener una equivalencia entre continuidad y acotamiento de una transformación.

Decimos que la norma de una transformación está definida como

\norm{T}=\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}.

Por ende, decimos que una transformación es acotada si su norma es acotada, \norm{T}<\infty.

Problema. Sea V un espacio euclideano y sea T una transformación lineal simétrica en V. Sean \lambda_1,\ldots,\lambda_n los eigenvalores de T. Prueba que

\sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}} =\max_{1\leq i\leq n} |\lambda_i|.

Solución. Renumerando a los eigenvalores, podemos decir que \max_i |\lambda_i|=|\lambda_n|. Sea e_1,\ldots,e_n una base ortonormal de V tal que T(e_i)=\lambda_i e_i para todo i. Si x\in V\setminus {0}, podemos escribirlo como x=x_1e_1+\ldots+x_n e_n para algunos reales x_i. Entonces, por linealidad de T,

T(x)=\sum_{i=1}^n \lambda_i x_ie_i.

Dado que |\lambda_i|\leq |\lambda_n| para toda i, tenemos que

\frac{\norm{T(x)}}{\norm{x}}=\sqrt{\frac{\sum_{i=1}^n \lambda_i^2 x_i^2}{\sum_{i=1}^n x_i^2}}\leq |\lambda_n|,

por lo tanto

    \begin{align*} \max_{1\leq i\leq n} |\lambda_i|&=|\lambda_n|=\frac{\norm{T(e_n)}}{\norm{e_n}}\\&\leq \sup_{x\in V\setminus{0}} \frac{\norm{T(x)}}{\norm{x}}\\ &\leq |\lambda_n|= \max_{1\leq i\leq n} |\lambda_i|. \end{align*}

Obteniendo lo que queremos.

\square

Para finalizar, no olvidemos que una matriz es diagonalizable si y sólo si el espacio tiene una base de eigenvectores, y que está íntimamente relacionado con el teorema espectral.

Problema. Encuentra una base ortogonal consistente con los eigenvectores de la matriz

A=\frac{1}{7}\begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}.

Solución. Para encontrar los eigenvectores, primero encontrar los eigenvalores y, después, para cada eigenvalor, encontrar el/los eigenvectores correspondientes.

Calculemos:

    \begin{align*}0&=\text{det}(\lambda I-A)=\begin{vmatrix} \lambda+2/7 & -6/7 & 3/7 \\ -6/7 & \lambda-3/7 & -2/7 \\ 3/7 & -2/7 & \lambda-6/7 \end{vmatrix} \\&= \lambda^3-\lambda^2-\lambda+1 \\&= (\lambda -1)(\lambda^2 -1),\end{align*}

entonces los eigenvalores de A son 1,-1, (\lambda=1 tiene multiplicidad 2).

Ahora, hay que encontrar los vectores v=(x,y,z) tal que Av=\lambda v, para todo eigenvalor \lambda.

Si \lambda=-1,

(\lambda I-A)v=\frac{1}{7}\begin{pmatrix} -5 & -6 & 3 \\ -6 & -10 & -2 \\ 3 & -2 & -13 \end{pmatrix}v=0,

reduciendo, obtenemos que v=(3\alpha, -2\alpha, \alpha) para todo \alpha\in \mathbb{R}.

Si \lambda=1, resolviendo de la misma manera (\lambda I-A)v=(I-A)v=0, tenemos que v=(\beta,\gamma,-3\beta+2\gamma) para todo \beta,\gamma. Entonces el conjunto de eigenvectores es

B=\{ v_1=(3,-2,1), \quad v_2=(1,0,-3), \quad v_3=(0,1,2) \}.

Es fácil ver que el conjunto B es linealmente independiente, más aún \text{dim}(\mathbb{R}^3)=3=|B|, por lo tanto, B es la base consistente con los eigenvectores de A.

\square

Agradecemos su esfuerzo por llegar hasta el final a pesar de todas las adversidades. Esperamos pronto volver a ser sus profesores/ayudantes. Mucha suerte en la última parcial, es el último esfuerzo. Pero también les deseamos mucho éxito en su proyecto de vida. ¡Gracias!

Álgebra Lineal I: Teorema espectral para matrices simétricas reales

Introducción

En esta entrada demostramos el teorema espectral para matrices simétricas reales en sus dos formas. Como recordatorio, lo que probaremos es lo siguiente.

Teorema. Sea V un espacio euclideano y T:V\to V una transformación simétrica. Entonces, existe una base ortonormal de V que consiste de eigenvectores de T.

Teorema. Sea A una matriz simétrica en \mathbb{R}^n. Entonces, existe una matriz ortogonal P y una matriz diagonal D, ambas en \mathbb{R}^n, tales que

    \[A=P^{-1}DP.\]

Para ello, usaremos los tres resultados auxiliares que demostramos en la entrada de eigenvalores de matrices simétricas reales. Los enunciados precisos están en ese enlace. Los resumimos aquí de manera un poco informal.

  • Los eigenvalores complejos de matrices simétricas reales son números reales.
  • Si una transformación T es simétrica y W es un subespacio estable bajo T, entonces W^\bot también lo es. Además, T restringida a W o a W^\bot también es simétrica.
  • Es lo mismo que una matriz sea diagonalizable, a que exista una base formada eigenvectores de la matriz.

Además de demostrar el teorema espectral, al final de la entrada probaremos una de sus consecuencias más importantes. Veremos una clasificación de las matrices que inducen formas bilineales positivas.

Demostración de la primera versión del teorema espectral

Comenzamos mostrando la siguiente versión del teorema espectral.

Teorema. Sea V un espacio euclideano y T:V\to V una transformación simétrica. Entonces, existe una base ortonormal de V que consiste de eigenvectores de T.

Demostración. Como V es espacio Euclideano, entonces tiene cierta dimensión finita n. Haremos inducción fuerte sobre n. Si n=1, el polinomio característico de T es de grado 1 y con coeficientes reales, así que tiene una raíz \lambda real. Si v es un eigenvector de T para \lambda, entonces \frac{v}{\norm{v}} también es eigenvector de T y conforma una base ortonormal para V.

Supongamos que el resultado es cierto para todo espacio Euclideano de dimensión menor a n y tomemos V espacio Euclideano de dimensión n. Por el teorema fundamental del álgebra, el polinomio característico de T tiene por lo menos una raíz \lambda en \mathbb{C}. Como T es simétrica, cualquier matriz A que represente a T también, y \lambda sería una raíz del polinomio característico de A. Por el resultado que vimos en la entrada anterior, \lambda es real.

Consideremos el kernel W de la transformación \lambda \text{id} - T. Si W es de dimensión n, entonces W=V, y por lo tanto T(v)=\lambda v para todo vector v en V, es decir, todo vector no cero de V es eigenvector de T. De esta forma, cualquier base ortonormal de V satisface la conclusión. De esta forma, podemos suponer que W\neq V y que por lo tanto 1\leq \dim W \leq n-1, y como

    \[V=W\oplus W^\bot,\]

se obtiene que 1\leq \dim W^\bot \leq n-1. Sea B una base ortonormal de W, que por lo tanto está formada por eigenvectores de T con eigenvalor \lambda.

Como la restricción T_1 de T a W^\bot es una transformación simétrica, podemos aplicar la hipótesis inductiva y encontrar una base ortonormal B' de eigenvectores de T_1 (y por lo tanto de T) para W^\bot.

Usando de nuevo que

    \[V=W\oplus W^\bot,\]

tenemos que B\cup B' es una base de V formada por eigenvectores de T.

El producto interior de dos elementos distintos de B, o de dos elementos distintos de B' es cero, pues individualmente son bases ortonormales. El producto de un elemento de B y uno de B' es cero pues un elemento está en W y el otro en W^\bot. Además, todos los elementos de B\cup B' tiene norma 1, pues vienen de bases ortogonales. Esto muestra que B\cup B' es una base ortonormal de V que consiste de eigenvectores de T.

\square

Demostración de la segunda versión del teorema espectral

Veamos ahora la demostración del teorema espectral en su enunciado con matrices.

Teorema. Sea A una matriz simétrica en \mathbb{R}^n. Entonces, existe una matriz ortogonal P y una matriz diagonal D, ambas en \mathbb{R}^n, tales que

    \[A=P^{-1}DP.\]

Demostración. Como A es una matriz simétrica, la transformación T:F^n\to F^n dada por T(X)=AX es simétrica. Aplicando la primer versión del teorema espectral, existe una base ortonormal de F^n que consiste de eigenvectores de T. Digamos que estos eigenvectores son C_1,\ldots,C_n. Por definición de T, estos eigenvectores de T son exactamente eigenvectores de A.

Anteriormente demostramos que si construimos a una matriz B usando a C_1,\ldots,C_n como columnas y tomamos la matriz diagonal D cuyas entradas son los eigenvalores correspondientes \lambda_1,\ldots,\lambda_n, entonces

    \[A=BDB^{-1}.\]

Afirmamos que la matriz B es ortogonal. En efecto, la fila j de la matriz ^t B es precisamente C_j. De esta forma, la entrada (i,j) del producto {^tB} B es precisamente el producto punto de C_i con C_j. Como la familia C_1,\ldots,C_n es ortonormal, tenemos que dicho producto punto es uno si i=j y cero en otro caso. De aquí, se concluye que {^tB} B=I_n.

Si una matriz es ortogonal, entonces su inversa también. Esto es sencillo de demostrar y queda como tarea moral. Así, definiendo P=B^{-1}, tenemos la igualdad

    \[A=P^{-1}DP,\]

con D diagonal y P ortogonal, justo como lo afirma el teorema.

\square

Matrices positivas y positivas definidas

Una matriz A simétrica en M_n(\mathbb{R}) induce una forma bilineal simétrica en \mathbb{R}^n mediante la asignación

    \[(x,y) \mapsto {^t x} A y,\]

con forma cuadrática correspondiente

    \[x \mapsto {^t x} A x.\]

Definición. Una matriz A en M_n(\mathbb{R}) es positiva o positiva definida si su forma bilineal asociada es positiva o positiva definida respectivamente.

Una de las aplicaciones del teorema espectral es que nos permite dar una clasificación de las matrices simétricas positivas.

Teorema. Sea A una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. A es positiva.
  2. Todos los eigenvalores de A son no negativos.
  3. A=B^2 para alguna matriz simétrica B en M_n(\mathbb{R}).
  4. A= {^tC} C para alguna matriz C en M_n(\mathbb{R}).

Demostración. (1) implica (2). Supongamos que A es positiva y tomemos \lambda un eigenvalor de A. Tomemos v un eigenvector de eigenvalor \lambda. Tenemos que:

    \begin{align*}\lambda \norm{v}^2 &=\lambda {^tv} v\\&= {^t v} (\lambda v)\\&={^t v} Av\\&\geq 0.  \end{align*}

Como \norm{v}^2\geq 0, debemos tener \lambda \geq 0.

(2) implica (3). Como A es matriz simétrica, por el teorema espectral tiene una diagonalización A=P^{-1}DP con P una matriz invertible y D una matriz diagonal cuyas entradas son los eigenvalores \lambda_1,\ldots,\lambda_n de A. Como los eigenvalores son no negativos, podemos considerar la matriz diagonal E cuyas entradas son los reales \sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}. Notemos que E^2=D, así que si definimos a la matriz B=P^{-1}EP, tenemos que

    \[B^2=P^{-1}E^2 P = P^{-1}DP = A.\]

Además, B es simétrica pues como E es diagonal y P es ortogonal, tenemos que

    \begin{align*}{^tB} &= {^t P} {^t E} {^t (P^{-1})}\\&= P^{-1} E P\\&= B.\end{align*}

(3) implica (4). Es inmediato, tomando C=B y usando que B es simétrica.

(4) implica (1). Si A= {^tC} C y tomamos un vector v en \mathbb{R}^n, tenemos que

    \begin{align*}{^t v} A v &= {^tv} {^tC} C v\\&= {^t(Cv)} (Cv)\\&=\norm{Cv}^2\\&\geq 0,\end{align*}

lo cual muestra que A es positiva.

\square

También hay una versión de este teorema para matrices simétricas positivas definidas. Enunciarlo y demostrarlo queda como tarea moral.

En una entrada final, se verá otra consecuencia linda del teorema espectral: el teorema de descomposición polar. Dice que cualquier matriz con entradas reales se puede escribir como el producto de una matriz ortogonal y una matriz simétrica positiva.

Más allá del teorema espectral

Durante el curso introdujimos varias de las nociones fundamentales de álgebra lineal. Con ellas logramos llegar a uno de los teoremas más bellos: el teorema espectral. Sin embargo, la teoría de álgebra lineal no termina aquí. Si en tu formación matemática profundizas en el área, verás otros temas y resultados fundamentales como los siguientes:

  • El teorema de Cayley-Hamiltón: toda matriz se anula en su polinomio característico.
  • La clasificación de matrices diagonalizables: una matriz es diagonalizable si y sólo si su polinomio característico se factoriza en el campo de la matriz, y la multiplicidad algebraica de sus eigenvalores corresponde con la multiplicidad geométrica.
  • El teorema de la forma canónica de Jordan: aunque una matriz no se pueda diagonalizar, siempre puede ser llevada a una forma estándar «bonita».
  • Productos interiores con imágenes en \mathbb{C}, a los que también se les conoce como formas hermitianas.
  • Los polinomios mínimos de matrices y transformaciones, que comparten varias propiedades con el polinomio característico, pero dan información un poco más detallada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que la inversa de una matriz ortogonal es ortogonal.
  • Encuentra una base ortonormal de \mathbb{R}^3 conformada por eigenvectores de la matriz \begin{pmatrix}10 & 0 & -7\\ 0 & 3 & 0 \\ -7 & 0 & 10\end{pmatrix}.
  • Determina si la matriz anterior es positiva y/o positiva definida.
  • Enuncia y demuestra un teorema de clasificación de matrices simétricas positivas definidas.
  • Muestra que la matriz

        \[\begin{pmatrix}5 & 1 & 7\\1 & 10 & -7\\7 & -7 & 18\end{pmatrix}\]

    es positiva.