Archivo de la etiqueta: concurrencia

Geometría Moderna II: Eje radical de 2 circunferencias

Por Armando Arzola Pérez

Introducción

En la entrada anterior hablamos de la noción de potencia de un punto con respecto a una circunferencia. Lo que haremos ahora es tomar dos circunferencias y preguntarnos por los puntos cuya potencia a ellas coincide. Esto nos llevará a estudiar la noción de eje radical de las circunferencias.

A grandes rasgos, definiremos qué es el eje radical. Luego, mostraremos que es una recta muy específica. Después de hacer eso, estudiaremos qué sucede si tenemos tres circunferencias. Finalmente, hablaremos un poco de cómo dibujar el eje radical de dos circunferencias.

Eje radical de 2 circunferencias

La definición que nos interesa estudiar ahora es el conjunto de puntos del plano cuyas potencias a dos circunferencias coincide. La siguiente definición formaliza esto.

Definición. El eje radical de dos circunferencias no concéntricas $\mathcal{C}_1$ y $\mathcal{C}_2$ es el lugar geométrico de los puntos $P$ tales que $$\text{Pot}(P,\mathcal{C}_1)=\text{Pot}(P,\mathcal{C}_2).$$ Si un punto está en el eje radical de ellas, decimos que es equipotente a ambas.

Ejemplo.

$\triangle$

El eje radical es una recta

En esta sección demostraremos el siguiente teorema.

Teorema. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de de centros $O_1$ y $O_2$. El eje radical de ellas es la recta que perpendicular a la recta $O_1O_2$, y que pasa por el punto $M$ de $O_1O_2$ que cumple $\text{Pot}(M,\mathcal{C}_1)=\text{Pot}(M,\mathcal{C}_2).$

La demostración de este teorema la dividiremos en las siguientes partes:

  1. Probar que existe al menos un punto $P$ en el eje radical.
  2. Mostrar que la proyección $M$ de dicho punto a la recta $O_1O_2$ también está en el eje radical.
  3. Ver que todo punto en la perpendicular a $O_1O_2$ por $M$ está en el eje radical.
  4. Mostrar que no existen otros puntos en el eje radical más allá de los ya localizados.

Veamos cada uno de estos puntos como una proposición por separado.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas. Existe al menos un punto $P$ en el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$.

Demostración. Vamos a dar una construcción explícita para encontrar un punto en el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$:

Eje radical de 2 circunferencias, construcción de un punto equipotente

Para ello, tracemos una tercera circunferencia $\mathcal{C}_3$ que intersecte a cada una de $\mathcal{C}_1$ y $\mathcal{C}_2$ en dos puntos (una manera de hacer esto esto tomar $\mathcal{C}_3$ como el circuncírculo un punto dentro de $\mathcal{C}_1$, uno dentro de $\mathcal{C}_2$ y otro fuera de ambas).

Llamamos $A_1,B_1$ las intersecciones con $\mathcal{C}_1$ y $A_2,B_2$ las intersecciones con $\mathcal{C}_2$. Tomamos el punto $P$ como la intersección de $A_1B_1$ con $A_2B_2$ como en la siguiente figura.

Las siguientes cuentas muestran que $P$ es equipotente a ambas. Estamos usando el resultado de la entrada anterior que muestra que el cálculo de la potencia con respectoa $\mathcal{C}_3$ no depende de los puntos elegidos.

\begin{align*}
\text{Pot}(P,\mathcal{C}_1)&=PA_1 \cdot PB_1\\
&=\text{Pot}(P,\mathcal{C}_3)\\
&=PA_2 \cdot PB_2\\
&=\text{Pot}(P,\mathcal{C}_2)
\end{align*}

Por lo anterior es una realidad que existe al menos un punto en el eje radical.

$\square$

Ahora veremos que la proyección de un punto equipotente en la recta de los centros también es un punto equipotente.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de centros $O_1$ y $O_2$. Si $P$ es un punto equipotente con respecto a ellas y $M$ es el pie de la perpendicular desde $P$ a la recta $O_1O_2$, entonces $M$ es equipotente con respecto a las dos circunferencias.

Demostración. Sean $r_1$ y $r_2$ los radios de $\mathcal{C}_1$ y $\mathcal{C}_2$, respectivamente. Como $P$ esta en el eje radical de ambas, entonces por cómo se calcula la potencia con la distancia a los centros y el radio, tenemos que

\begin{equation}\label{eq:pot-ambos}PO_1^2 – r_1^2 = PO_2^2 – r_2^2.\end{equation}

Queremos demostrar que $M$ pertenece al eje radical, ósea $\text{Pot}(M,\mathcal{C}_1)=\text{Pot}(M,\mathcal{C}_2)$.

Tracemos los segmentos $O_1P$ y $O_2P$. Los triángulos $\triangle PMO_1$ y $\triangle PMO_2$ son rectángulos, ver la siguiente figura.

Por Pitágoras se sigue que $$PO_1^2=MO_1^2+PM^2$$ y $$PO_2^2=MO_2^2+PM^2.$$

Al sustituir en \eqref{eq:pot-ambos}, obtenemos: $$MO_1^2+PM^2-r_1^2=MO_2^2+PM^2-r_2^2.$$

Cancelando $PM^2$, se obtiene la expresión que muestra que $M$ también es equipotente a ambas circunferencias:

\begin{equation}\label{eq:Mradical}MO_1^2-r_1^2=MO_2^2-r_2^2.\end{equation}

$\square$

Ahora veremos que todos los puntos en la perpendicular por $M$ también son equipotentes.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de de centros $O_1$ y $O_2$. Si $M$ es un punto en $O_1O_2$ equipotente a ambas circunferencias, entonces todos los puntos en la perpendicular a $O_1O_2$ por $M$ también lo son.

Demostración. A la perpendicular del enunciado la llamaremos $l$. Sea $X$ un punto en $l$. Debemos mostrar que $$\text{Pot}(X,\mathcal{C}_1)=\text{Pot}(X,\mathcal{C}_2).$$

Para ello, trazamos $O_1X$ y $O_2X$.

Eje radical de 2 circunferencias demostración de proposición.

Como los triángulos $\triangle XMO_1$ y $\triangle XMO_2$ son rectángulos, nuevamente por Pitágoras: $$XO_1^2=MO_1^2+XM^2$$ y $$XO_2^2=MO_2^2+XM^2.$$

Usando las igualdades anteriores y que $M$ está en el eje radical (específicamente, \eqref{eq:Mradical}), tenemos que:

\begin{align*}
\text{Pot}(X,\mathcal{C}_1)&=XO_1^2-r_1^2\\
&= MO_1^2+XM^2 – r_1^2\\
&=MO_2^2+XM^2 – r_2^2\\
&=XO_2^2-r_2^2\\
&=\text{Pot}(X,\mathcal{C}_2)
\end{align*}

Por lo tanto, todo punto $X$ en $l$ es un punto en el eje radical.

$\square$

Ya sólo nos falta ver que no hay más puntos equipotentes.

Proposición. Sean $\mathcal{C}_1$ y $\mathcal{C}_2$ circunferencias no concéntricas de de centros $O_1$ y $O_2$. Si $M$ es un punto en $O_1O_2$ equipotente a ambas circunferencias, entonces únicamente los puntos en la perpendicular a $O_1O_2$ por $M$ son equipotentes a las circunferencias.

Demostración. Primero veremos que el único punto en $O_1O_2$ que puede funcionar es $M$. Para ello, para buscar una contradicción supongamos que otro punto $N$ en la recta $O_1O_2$, con $N\neq M$ también cumple que $\text{Pot}(N,\mathcal{C}_1)=\text{Pot}(N,\mathcal{C}_2)$. Entonces, $$NO_1^2-r_1^2=NO_2^2-r_2^2.$$

Restando a esta ecuación la ecuación \eqref{eq:Mradical}, obtenemos que $$NO_1^2-MO_1^2 = NO_2^2-MO_2^2,$$ y por diferencia de cuadrados, $$(NO_1+MO_1)(NO_1-MO_1)=(NO_2+MO_2)(NO_2-MO_2).$$

Tenemos que $NO_1-MO_1=NO_1+O_1M=NM$ y lo análogo para $O_2$, de modo que $$(NO_1+MO_1)NM=(NO_2+MO_2)NM.$$

Como $N\neq M$, tenemos $NM\neq 0$ y lo podemos cancelar. $$NO_1+MO_1=NO_2+MO_2,$$

de donde sale la cuarta igualdad de la siguiente cadena:

\begin{align*}
O_2O_1&=O_2N+NO_1\\
&=-NO_2+NO_1\\
&=-MO_1+MO_2\\
&=O_1M+MO_2\\
&=O_1O_2.
\end{align*}

Obtenemos que $O_2O_1=O_1O_2$. ¡Esto es imposible, pues son segmentos dirigidos y $O_1\neq O_2$! Esta contradicción muesta que $M$ es el único punto en $O_1O_2$ equipotente a ambas circunferencias.

Para finalizar, supongamos que existe un punto $P’$ cualquiera del plano equipotente a $\mathcal{C}_1$ y $\mathcal{C}_2$. Por la proposición de la proyección, la proyección $M’$ de $P’$ en $O_1O_2$ también es equipotente. Por lo que acabamos de mostrar, $M=M’$. Y así, $P’$ está en la perpendicular a $O_1O_2$ por $M$, como queríamos.

$\square$

Los ejes radicales por parejas de 3 circunferencias son concurrentes

Si tenemos tres circunferencias, entonces definen tres ejes radicales. Estos tres ejes radicales siempre concurren.

Teorema. Sean $\mathcal{C}_1$, $\mathcal{C}_2$ y $\mathcal{C}_3$ circunferencias de centros no colineales. Sea $e_1$ el eje radical de $\mathcal{C}_1$ y $\mathcal{C}_2$. Sea $e_2$ el eje radical de $\mathcal{C}_2$ y $\mathcal{C}_3$. Sea $e_3$ el eje radical de $\mathcal{C}_3$ y $\mathcal{C}_1$. Las rectas $e_1,e_2,e_3$ son concurrentes.

Demostración. Consideremos 3 circunferencias $\mathcal{C}_1,\mathcal{C}_2$ y $\mathcal{C}_3$, cuyos centros son $O_1$, $O_2$ y $O_3$ no son colineales (en particular, son distintos). Tomemos los ejes radicales $e_1,e_2,e_3$ como en el enunciado.

Llamamos $P$ al punto de intersección de $e_1$ y $e_2$. Como $P$ está en $e_1$, entonces $\text{Pot}(P,\mathcal{C}_1)=\text{Pot}(P,\mathcal{C}_2)$ y como $P$ está en $e_2$, entonces $\text{Pot}(P,\mathcal{C}_2)=\text{Pot}(P,\mathcal{C}_3)$.

De esta manera, $$\text{Pot}(P,\mathcal{C}_1)=\text{Pot}(P,\mathcal{C}_3).$$ Esto muestra que también $P$ está en $e_3$. Por lo tanto, los 3 ejes radicales concurren en $P$.

$\square$

Construcción del eje radical

¿Cómo podemos dibujar el eje radical de dos circunferencias no concéntricas $\mathcal{C}_1$ y $\mathcal{C}_2$, digamos, con regla y compás? Podemos seguir la idea que usamos cuando probamos que por lo menos existe un punto en el eje radical. Sean $O_1$ y $O_2$ los centros de estas circunferencias, respectivamente.

Dibujemos una circunferencia $\mathcal{C}$ que corte a las circunferencias $\mathcal{C}_1$ y $\mathcal{C}_2$, en $A,A’$ y $B,B’$. Esto puede hacerse trazando el circuncírculo de $O_1$, $O_2$ y un punto fuera de ambas cirfunferencias. Sean $A$ y $A’$ las intersecciones de $\mathcal{C}$ con $\mathcal{C}_1$. Sean $B$ y $B’$ las intersecciones de $\mathcal{C}$ con $\mathcal{C}_2$. Tomemos $P$ la intersección de $AA’$ y $BB’$. Por lo que mostramos anteriormente, $P$ está en el eje radical de las circunferencias. Y además, también mostramos que la recta perpendicular a $O_1O_2$ por $P$ es el eje radical. Así, al trazar esta perpendicular, obtenemos el eje radical requerido.

Más adelante…

Se seguirá abordando el tema de potencia de un punto y el eje radical con respecto a las circunferencias ortogonales.

Al final de los temas de esta primera unidad se dejará unas series de ejercicios.

Entradas relacionadas

Geometría Moderna I: Teorema de Ceva

Por Rubén Alexander Ocampo Arellano

Introducción

En esta ocasión veremos algunas proposiciones sobre concurrencia de rectas, principalmente el teorema de Ceva y su forma trigonométrica, a partir de los cuales mostraremos otros resultados.

Teorema de Ceva

Definición 1. Si una recta pasa por el vértice de un triángulo, el segmento comprendido entre el vértice y la intersección con el lado opuesto, se llama ceviana.

Teorema 1, de Ceva. Sean $\triangle ABC$ y $AX$, $BY$, $CZ$ cevianas, entonces $AX$, $BY$, $CZ$ son concurrentes si y solo si
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = 1$.

Demostración. Supongamos que $AX$, $BY$ y $CZ$ concurren en $S$.

Figura 1

Aplicamos el teorema de Menelao a $\triangle ABX$ y la trasversal $ZSC$
$\dfrac{AZ}{ZB} \dfrac{BC}{CX} \dfrac{XS}{SA} = – 1$.

Nuevamente, usamos el teorema de Menelao, ahora en $\triangle AXC$ y la transversal $BYS$
$\dfrac{AS}{SX} \dfrac{XB}{BC} \dfrac{CY}{YA} = – 1$.

Multiplicamos estas dos igualdades y reordenamos
$\dfrac{AZ}{ZB} \dfrac{XB}{CX} \dfrac{CY}{YA} \dfrac{XS}{SA} \dfrac{AS}{SX} \dfrac{BC}{BC} = 1$.

Simplificamos empleando segmentos dirigidos
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = 1$.

$\blacksquare$

Conversamente, supongamos que para las tres cevianas $AX$, $BY$ y $CZ$, se cumple la igualdad $\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = 1$, sea $S = BY \cap CZ$, queremos ver que $AX$ pasa por $S$.

Sea $X’ = AS \cap BC$, entonces las cevianas $AX’$, $BY$ y $CZ$ son concurrentes por lo tanto
$\dfrac{AZ}{ZB} \dfrac{BX’}{X’C} \dfrac{CY}{YA} = 1$.

Como resultado de esta igualdad y nuestra hipótesis obtenemos
$\dfrac{BX}{XC} = \dfrac{BX’}{X’C}$.

Es decir, $X$ y $X’$ dividen a $BC$ en la misma razón, por lo tanto, $X = X’$.

$\blacksquare$

Forma trigonométrica del teorema de Ceva

Forma trigonométrica del teorema de Ceva. Sean $AZ$, $BY$ y $CZ$ cevianas de un triángulo $\triangle ABC$, entonces $AX$, $BY$, $CZ$ son concurrentes si y solo si
$\dfrac{\sin \angle ACZ}{\sin \angle ZCB} \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBY}{\sin \angle YBA} = 1$.

Demostración. Aplicamos el lema de la razón a los puntos $X$, $Y$, $Z$ (figura 1)

$\dfrac{BX}{XC} = \dfrac{BA}{AC} \dfrac{\sin \angle BAX}{\sin \angle XAC}$,
$\dfrac{CY}{YA} = \dfrac{CB}{BA} \dfrac{\sin \angle CBY}{\sin \angle YBA}$,
$\dfrac{AZ}{ZB} = \dfrac{AC}{CB} \dfrac{\sin \angle ACZ}{\sin \angle ZCB}$.

Multiplicamos las tres igualdades
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} $
$= \dfrac{\sin \angle ACZ}{\sin \angle ZCB} \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBY}{\sin \angle YBA}$.

Por el teorema de Ceva, $\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = 1$
si y solo si $AX$, $BY$, $CZ$ son concurrentes.

Por lo tanto,
$\dfrac{\sin \angle ACZ}{\sin \angle ZCB} \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBY}{\sin \angle YBA} = 1$
si y solo si $AX$, $BY$, $CZ$ son concurrentes.

$\blacksquare$

Conjugados isotómicos

Proposición 1. Sea $\triangle ABC$ y $P$ un punto en el plano, sean $X = AP \cap BC$, $Y = BP \cap CA$, $Z = CP \cap AB$, considera los puntos isotómicos $X’$, $Y’$, $Z’$ de $X$, $Y$, $Z$ respectivamente, entonces las cevianas $AX’$, $BY’$, $CZ’$ son concurrentes, al punto de concurrencia se le conoce como conjugado isotómico de $P$ respecto a $\triangle ABC$.

Demostración. Como $AX$, $BY$, $CZ$ son concurrentes, por el teorema de Ceva $\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = 1$.

Figura 2

Ya que $X’$, $Y’$, $Z’$ son las reflexiones de $X$, $Y$, $Z$, respectivamente, respecto de los puntos medios de $BC$, $CA$ y $AB$ respectivamente entonces

$\dfrac{AZ’}{Z’B} \dfrac{BX’}{X’C} \dfrac{CY’}{Y’A}$
$= \dfrac{ZB}{AZ} \dfrac{XC}{BX} \dfrac{YA}{CY}$
$= (\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA})^{- 1} = 1$.

Por lo tanto, por el teorema de Ceva, $AX’$, $BY’$, $CZ’$ son concurrentes.

$\blacksquare$

Teorema de Blanchet

Definición 2. Si tres cevianas $AX$, $BY$, $CZ$ de un triángulo $\triangle ABC$ concurren en un punto $P$, a $\triangle XYZ$ se le conoce como triángulo de Ceva de $P$ respecto de $\triangle ABC$.

Teorema 2, de Blanchet. Sea $\triangle ABC$ y $X$ el pie de la altura por $A$, sea $P$ cualquier punto en $AX$, $\triangle XYZ$ el triángulo de Ceva de $P$ respecto de $\triangle ABC$, entonces $AX$ es la bisectriz de $\angle ZXY$.

Demostración. Sean $l$ la paralela a $BC$ por $A$, $D = XZ \cap l$, $E = XY \cap l$, entonces tenemos las siguientes semejanzas $\triangle YCX \sim \triangle YAE$, $\triangle ZAD \sim \triangle ZBX$, esto es,
$\dfrac{YC}{YA} = \dfrac{CX}{AE}$ y $\dfrac{ZA}{ZB} = \dfrac{AD}{BX}$.

Figura 3

Como las cevianas $AX$, $BY$, $CZ$ son concurrentes, por el teorema de Ceva tenemos
$\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = 1$.

Sustituimos las ecuaciones derivadas de la semejanza
$\dfrac{DA}{BX} \dfrac{BX}{XC} \dfrac{XC}{AE} = 1$.

Esto implica que $DA = AE$.

Como $\angle EAX = \angle XAD = \dfrac{\pi}{2}$, por criterio de congruencia LAL, $\triangle XAE \cong \triangle XAD$.

Por lo tanto, $\angle DXA = \angle AXE$.

$\blacksquare$

Teorema del nido de Ceva

Teorema 3. Sean $AD$, $BE$, $CF$ tres cevianas de un triángulo $\triangle ABC$; $DX$, $EY$, $FZ$, tres cevianas de $\triangle DEF$, si dos de las tercias $(AD, BE, CF)$; $(DX, EY, FZ)$; $(AX, BY, CZ)$, entonces la tercera también es concurrente.

Demostración. Supongamos que $(AD, BE, CF)$ y $(DX, EY, FZ)$ son concurrentes, la prueba para otros casos es análoga.

Aplicamos el lema de la razón a los triángulos $\triangle AEF$, $\triangle BFD$, $\triangle CDE$ y los respectivos puntos $X$, $Y$, $Z$,

$\dfrac{EX}{XF} = \dfrac{EA}{AF} \dfrac{\sin \angle EAX}{\sin \angle XAF}$,

$\dfrac{FY}{YD} = \dfrac{FB}{BD} \dfrac{\sin \angle FBY}{\sin \angle DBY}$,

$\dfrac{DZ}{ZE} = \dfrac{DC}{CE} \dfrac{\sin \angle DCZ}{\sin \angle ECZ}$.

Figura 4

Sean $X’ = AX \cap BC$, $Y’ = BY \cap CA$, $Z’ = CZ \cap AB$, recordemos que si dos ángulos son suplementarios su seno es igual, ahora multiplicamos las tres ecuaciones y reacomodamos

$\dfrac{DZ}{ZE} \dfrac{EX}{XF} \dfrac{FY}{YD}$
$= (\dfrac{AF}{FB} \dfrac{BD}{DC} \dfrac{CE}{EA})^{- 1} \dfrac{\sin \angle X’AC}{\sin \angle X’AB} \dfrac{\sin \angle Y’BA}{\sin \angle CBY’} \dfrac{\sin \angle Z’CB}{\sin \angle ACZ’}$.

Por otra parte, como $(AD, BE, CF)$ y $(DX, EY, FZ)$ son concurrentes, por el teorema de Ceva
$\dfrac{AF}{FB} \dfrac{BD}{DC} \dfrac{CE}{EA} = 1$,

$\dfrac{DZ}{ZE} \dfrac{EX}{XF} \dfrac{FY}{YD} = 1$.

Por lo tanto,
$\dfrac{\sin \angle ACZ’}{\sin \angle Z’CB} \dfrac{\sin \angle X’AB}{\sin \angle X’AC} \dfrac{\sin \angle CBY’}{\sin \angle Y’BA}  = 1$.

Por la forma trigonométrica del teorema de Ceva, $AX’ = AX$, $BY’ = BY$, $CZ’ = CZ$, son concurrentes.

$\blacksquare$

Teorema de Jacobi

Teorema 4, de Jacobi. Sean $\triangle ABC$, $X$, $Y$, $Z$ puntos tales que $\angle XBC = \angle ABZ = \beta_1$, $\angle BCX = \angle YCA = \gamma_1$, $\angle CAY = \angle ZAB = \alpha_1$, entonces las rectas $AX$, $BY$, $CZ$ son concurrentes, al punto de concurrencia se le conoce como punto de Jacobi.

Demostración. Sean $\angle BAC = \alpha_0$, $\angle CBA = \beta_0$, $\angle ACB = \gamma_0$, $Q = BX \cap CA$, $R = CX \cap AB$.

Figura 5

Como $AX$, $BQ$, $CR$ concurren en $X$, por el teorema de Ceva trigonométrico,
$\dfrac{\sin \angle ACR}{\sin \angle RCB} \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \angle CBQ}{\sin \angle QBA} = 1$.

Por lo tanto,

$1 = \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \gamma_0 + \gamma_1}{\sin \gamma_1} \dfrac{\sin \pi – \beta_1}{\sin \pi – (\beta_0 + \beta_1)}$
$= \dfrac{\sin \angle BAX}{\sin \angle XAC} \dfrac{\sin \gamma_0 + \gamma_1}{\sin \gamma_1} \dfrac{\sin \beta_1}{\sin \beta_0 + \beta_1}$.

Igualmente podemos encontrar

$\dfrac{\sin \angle ACZ}{\sin \angle ZCB} \dfrac{\sin \beta_0 + \beta_1}{\sin \beta_1} \dfrac{\sin \alpha_1}{\sin \alpha_0 + \alpha_1} = 1$,

$\dfrac{\sin \angle CBY}{\sin \angle YBA} \dfrac{\sin \alpha _0 + \alpha _1}{\sin \alpha _1} \dfrac{\sin \gamma _1}{\sin \gamma _0 + \gamma _1} = 1$.

Multiplicando estas tres ecuaciones y obtenemos
$\dfrac{\sin \angle ACZ}{\sin \angle ZCB} \dfrac{\sin \angle BAX}{\sin \angle XAC}\dfrac{\sin \angle CBY}{\sin \angle YBA} = 1$.

Lo que significa, por la forma trigonométrica del teorema de Ceva que $AX$, $BY$, $CZ$ son concurrentes.

Observación. Notemos que el punto de Jacobi es una generalización de los puntos de Fermat que vimos en la unidad 2.

$\blacksquare$

Puntos de Napoleón

Corolario. Sea $ABCA’B’C’$ una configuración externa (interna) de Napoleón, sean $I_a$, $I_b$, $I_c$, los incentros de $\triangle A’BC$, $\angle AB’C$, $\angle ABC’$ respectivamente, entonces $AI_a$, $BI_b$, $CI_c$ son concurrentes, al punto de concurrencia $N_+$ ($N_-$) se le conoce como primer (segundo) punto de Napoleón.

Demostración. Como $\triangle A’BC$, $\triangle AB’C$, $\triangle ABC’$ son equiláteros y están construidos externamente (internamente) sobre los lados de $\triangle ABC$ entonces $\angle I_aBC = \angle ABI_c = \angle BCI_a = \angle I_bCA = \angle CAI_b = \angle I_cAB = \dfrac{\pi}{6}$.

Figura 6

Por el teorema de Jacobi, $AI_a$, $BI_b$, $CI_c$ son concurrentes.

$\blacksquare$

Teorema de Routh

Teorema 5, de Routh. Sean $AX$, $BY$, $CZ$ cevianas de un triángulo $\triangle ABC$ y considera $D = BY \cap AX$, $E = BY \cap CZ$, $F = AX \cap CZ$, $z = \dfrac{AZ}{ZB}$, $x = \dfrac{BX}{XC}$, $y = \dfrac{CY}{YB}$ entonces el área de $\triangle DEF$ se puede calcular mediante la siguiente formula:
$(\triangle DEF) = \dfrac{(1 – xyz)^2}{(xy + y + 1)(yz + z + 1)(zx + x + 1)}(\triangle ABC)$.

Demostración. Como $\triangle AFC$ y $\triangle AXC$ tienen la misma altura desde $C$ entonces.
$\dfrac{(\triangle AFC)}{(\triangle AXC)} = \dfrac{AF}{AX} = \dfrac{AF}{AF + FX} = \dfrac{1}{1 + \dfrac{FX}{AF}}$.

Figura 7

Aplicando el teorema de Menelao en $\triangle ABX$ y la transversal $ZFC$
$\dfrac{AZ}{ZB} \dfrac{BC}{CX} \dfrac{XF}{FA} = – 1$
$\Leftrightarrow \dfrac{XF}{FA} = \dfrac{ZB}{AZ} \dfrac{XC}{BC} = \dfrac{1}{z} \times \dfrac{XC}{BX + XC} = \dfrac{1}{z(x + 1)}$.

Como resultado,
$(\triangle AFC) = \dfrac{1}{1 + \dfrac{1}{z(x + 1)}}(\triangle AXC) = \dfrac{z(x + 1)}{zx + z + 1} (\triangle AXC)$

Por otro lado,
$\dfrac{(\triangle AXC)}{(\triangle ABC)} = \dfrac{XC}{BC} = \dfrac{XC}{BX + XC} = \dfrac{1}{x + 1}$.

Por lo tanto,
$(\triangle AFC) = \dfrac{z(x + 1)}{zx + z + 1} \times \dfrac{1}{1 + x} (\triangle ABC) = \dfrac{z}{zx + z + 1}(\triangle ABC)$.

Igualmente podemos encontrar
$(\triangle BDA) = \dfrac{x}{xy + x + 1}(\triangle ABC)$,
$(\triangle CEB) = \dfrac{y}{yz + y + 1}(\triangle ABC)$.

Finalmente
$(\triangle DEF) = (\triangle ABC) – (\triangle AFC) – (\triangle BDA) – (\triangle CEB)$
$= (\triangle ABC)(1 – \dfrac{z}{zx + z + 1} – \dfrac{x}{xy + x + 1} – \dfrac{y}{yz + y + 1})$
$= \dfrac{(1 – xyz)^2}{(xy + y + 1)(yz + z + 1)(zx + x + 1)} (\triangle ABC)$.

Los cálculos de la última ecuación quedan para el lector.

$\blacksquare$

Observación. Notemos que este resultado generaliza el teorema de Ceva pues si $AX$, $BY$, $CZ$ son concurrentes entonces $(\triangle DEF) = 0$, lo que implica que $\dfrac{AZ}{ZB} \dfrac{BX}{XC} \dfrac{CY}{YA} = xyz = 1$.

Por el contrario, si $xyz = 1$, entonces $(\triangle DEF) = 0$, es decir $AX$, $BY$, $CZ$ son concurrentes.

Más adelante…

En la siguiente entrada hablaremos sobre el punto de Nagel, un punto notable del triángulo con varias propiedades interesantes, la existencia de los conjugados isotómicos nos permitirá presentar este punto.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Empleando el teorema de Menelao, muestra que las medianas, las alturas y las bisectrices internas de todo triángulo son concurrentes.
  2. Sea $\triangle ABC$ y $X$, $X’ \in BC$; $Y$, $Y’ \in CA$; $Z$, $Z’ \in AB$, los puntos en que una circunferencia interseca a los lados de $\triangle ABC$, prueba que si $AX$, $BY$, $CZ$ son concurrentes, entonces $AX’$, $BY’$, $CZ’$ son concurrentes.
  3. In un triangulo $\triangle ABC$, $D$, $E$, $F$ son los pies de las alturas desde $A$, $B$, $C$, muestra que las perpendiculares desde $A$, $B$, y $C$ a $EF$, $DF$ y $DE$, respectivamente son concurrentes.
  4. Si las diagonales de un cuadrilátero convexo $\square ABCD$ se intersecan en $P$ muestra que
    $\dfrac{\sin \angle PAD}{\sin \angle PAB}\dfrac{\sin \angle PBA}{\sin \angle PBC}\dfrac{\sin \angle PCB}{\sin \angle PCD}\dfrac{\sin \angle PDC}{\sin \angle PDA} = 1$.
  5. Teorema de Kariya. Sea $\Gamma(I)$ el incírculo de un triángulo $\triangle ABC$, sean $D$, $E$, $F$ los puntos de tangencia de $\Gamma(I)$ con $BC$, $CA$ y $AB$ respectivamente, sean $(I, r)$ una circunferencia con centro en $I$ y radio $r$, $X = (I, r) \cap ID$, $Y = (I, r) \cap IE$, $Z = (I, r) \cap IF$, demuestra que $AX$, $BY$, $CZ$ son concurrentes.

Entradas relacionadas

Fuentes

  • Andreescu, T., Korsky, S. y Pohoata, C., Lemmas in Olympiad Geometry. USA: XYZ Press, 2016, pp 37-53, 85-93.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 158-160.
  • Posamentier, A. y Salkind, C; Challenging Problems in Geometry. New York: Dover, 1996, pp 36-42.
  • Wikipedia
  • The University of Georgia

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Modificar el problema

Por Leonardo Ignacio Martínez Sandoval

HeuristicasOtra técnica de resolucion de problemas es proponer un problema que ayude, pero que no necesariamente sea equivalente. Esto puede ser a través de problemas más particulares o de problemas más difíciles.

En esta serie de videos veremos esta técnica en acción en cuatro problemas.

Ir a los videos…