Archivo de la etiqueta: campos

Álgebra Lineal II: Aplicaciones de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que cualquier matriz (o transformación lineal) tiene una y sólo una forma canónica de Jordan. Además, explicamos cómo se puede obtener siguiendo un procedimiento específico. Para terminar nuestro curso, platicaremos de algunas de las consecuencias del teorema de Jordan.

Clasificación de matrices por similaridad

Una pregunta que aún no hemos podido responder es la siguiente: si nos dan dos matrices $A$ y $B$ en $M_n(F)$, ¿son similares? Con la maquinaria desarrollada hasta ahora podemos dar una muy buena respuesta.

Proposición. Sean $A$ y $B$ matrices en $M_n(F)$ tales que el polinomio característico de $A$ se divide en $F$. Entonces, $A$ y $B$ son similares si y sólo si se cumplen las siguientes dos cosas:

  • El polinomio característico de $B$ también se divide en $M_n(F)$ y
  • $A$ y $B$ tienen la misma forma canónica de Jordan.

Demostración. Sea $J$ la forma canónica de Jordan de $A$.

Si $A$ y $B$ son similares, como $A$ es similar a $J$, se tiene que $B$ es similar a $J$. Entonces, $B$ tiene el mismo polinomio característico que $A$ y por lo tanto se divide en $F$. Además, como $J$ es similar a $B$, entonces por la unicidad de la forma canónica de Jordan, precisamente $J$ es la forma canónica de Jordan de $B$. Esto es un lado de nuestra proposición.

Supongamos ahora que el polinomio característico de $B$ también se divide en $M_n(F)$ y que la forma canónica de Jordan de $B$ también es $J$. Por transitividad de similaridad, $A$ es similar a $B$.

$\square$

Veamos un ejemplo de cómo usar esto en un problema específico.

Problema. Encuentra dos matrices en $M_2(\mathbb{R})$ que tengan como polinomio característico a $x^2-3x+2$, pero que no sean similares.

Solución. Las matrices $A=\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ y $B=\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ ya están en forma canónica de Jordan y son distintas, así que por la proposición anterior no pueden ser similares. Además, por ser triangulares superiores, en ambos casos el polinomio característico es $$(X-1)(X-2)=X^2-3X+2.$$

$\triangle$

El problema anterior fue sumamente sencillo. Piensa en lo difícil que sería argumentar con cuentas de producto de matrices que no hay ninguna matriz $P\in M_2(\mathbb{R})$ tal que $A=P^{-1}B P$.

Forma canónica de Jordan «para cualquier matriz»

Como en $\mathbb{C}[X]$ todos los polinomios se dividen, entonces tenemos el siguiente corolario del teorema de Jordan.

Corolario. Toda matriz en $M_n(\mathbb{C})$ tiene una única forma canónica de Jordan.

Aquí $\mathbb{C}$ es muy especial pues es un campo completo, es decir, en el cual cualquier polinomio no constante tiene por lo menos una raíz. En general esto no es cierto, y es muy fácil dar ejemplos: $x^2-2$ no tiene raíces en $\mathbb{Q}$ y $x^2+1$ no tiene raíces en $\mathbb{R}$.

Sin embargo, existe toda un área del álgebra llamada teoría de campos en donde se puede hablar de extensiones de campos. Un ejemplo de extensión de campo es que $\mathbb{C}$ es una extensión de $\mathbb{R}$ pues podemos encontrar «una copia de» $\mathbb{R}$ dentro de $\mathbb{C}$ (fijando la parte imaginaria igual a cero).

Un resultado importante de teoría de campos es el siguiente:

Teorema. Sea $F$ un campo y $P(X)$ un polinomio en $F[X]$. Existe una extensión de campo $G$ de $F$ tal que $P(X)$ se divide en $G$.

¿Puedes notar la consecuencia que esto trae para nuestra teoría de álgebra lineal? Para cualquier matriz en $M_n(F)$, podemos considerar a su polinomio característico y encontrar campo $G$ que extiende a $F$ en donde el polinomio se divide. Por el teorema de Jordan, tendríamos entonces lo siguiente.

Corolario. Sea $A$ una matriz en $M_n(F)$. Entonces, $A$ tiene una forma canónica de Jordan en un campo $G$ que extiende a $F$.

Por supuesto, la matriz $P$ invertible que lleva $A$ a su forma canónica quizás sea una matriz en $M_n(G)$.

Toda matriz compleja es similar a su transpuesta

Ya demostramos que para cualquier matriz $A$ en $M_n(F)$ se cumple que $\chi_A(X)=\chi_(A^T)(X)$. Esto implica que $A$ y su transpuesta $A^T$ tienen los mismos eigenvalores, traza y determinante. También vimos que $\mu_A(X)=\mu_{A^T}(X)$. Las matrices $A$ y $A^T$ comparten muchas propiedades. ¿Será que siempre son similares? A continuación desarrollamos un poco de teoría para resolver esto en el caso de los complejos.

Proposición. Sea $J_{\lambda,n}$ un bloque de Jordan en $M_n(F)$. Entonces, $J_{\lambda,n}$ y $J_{\lambda,n}^T$ son similares.

Demostración. Para bloques de Jordan, podemos dar explícitamente la matriz de similitud. Es la siguiente matriz, con unos en la diagonal no principal:

$$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$

Esta matriz es invertible, su inversa es ella misma y cumple lo siguiente (ver ejercicios). Si $A$ es una matriz en $M_n(F)$, entonces:

  • Si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
  • Si $A$ tiene filas $R_1,\ldots, R_n$, entonces $PA$ tiene filas $R_n, \ldots, R_1$.

Para los bloques de Jordan, si revertimos el orden de las filas y luego el de las columnas, llegamos a la transpuesta. Así, $J_{\lambda,n}^T=PJ_{\lambda,n}P$ es la similitud entre las matrices dadas.

$\square$

La prueba anterior no funciona en general pues para matrices arbitrarias no pasa que $A^T=PAP$ (hay un contraejemplo en los ejercicios). Para probar lo que buscamos, hay que usar la forma canónica de Jordan.

Teorema. En $M_n(\mathbb{C})$, toda matriz es similar a su transpuesta.

Demostración. Sea $A$ una matriz en $M_n(\mathbb{C})$. Como en $\mathbb{C}$ todo polinomio se divide, tanto $A$ como $A^T$ tienen forma canónica de Jordan. Digamos que la forma canónica de Jordan es

\begin{equation}J=\begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix}.\end{equation}

Si $P$ es la matriz de similitud, tenemos que $A=P^{-1}JP$ y al transponer obtenemos que:

$$A^T=P^T\begin{pmatrix} J_{\lambda_1,k_1}^T & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2}^T & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3}^T & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}^T\end{pmatrix}(P^T)^{-1}.$$

Como por la proposición anterior cada bloque de Jordan es similar a su transpuesta, existen matrices invertibles $Q_1,\ldots,Q_d$ tales $J_{\lambda_i,k_i}^T=Q_i^{-1}J_{\lambda_i,k_i}Q_i$ para todo $i\in\{1,\ldots,d\}$. Pero entonces al definir $Q$ como la matriz de bloques

$$Q=\begin{pmatrix} Q_1 & 0 & \ldots & 0 \\ 0 & Q_2 & \ldots & 0 \\ 0 & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & Q_d \end{pmatrix},$$

obtenemos la similaridad

$$A^T=P^TQ^{-1} \begin{pmatrix} J_{\lambda_1,k_1} & 0 & 0 & \ldots & 0 \\ 0 & J_{\lambda_2,k_2} & 0 & \ldots & 0 \\ 0 & 0 & J_{\lambda_3,k_3} & \ldots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & J_{\lambda_d,k_d}\end{pmatrix} Q (P^T)^{-1}.$$

Así, $A$ y $A^T$ tienen la misma forma canónica de Jordan y por lo tanto son matrices similares.

$\square$

Más adelante…

¡Hemos terminado el curso de Álgebra Lineal II! Por supuesto, hay muchos temas de Álgebra Lineal adicionales que uno podría estudiar.

Un tema conectado con lo que hemos platicado es qué hacer con las matrices cuyo polinomio característico no se divide en el campo con el que estamos trabajando. Por ejemplo si tenemos una matriz $A$ en $M_n(\mathbb{R})$ cuyo polinomio característico no se divide, una opción es pensarla como matriz en $M_n(\mathbb{C})$ y ahí encontrar su forma canónica de Jordan. ¿Pero si queremos quedarnos en $\mathbb{R}$? Sí hay resultados que llevan una matriz a algo así como una «forma canónica» en $\mathbb{R}$ muy cercana a la forma canónica de Jordan.

Otro posible camino es profundizar en la pregunta de cuándo dos matrices en $M_n(F)$ son similares. Si tienen forma canónica de Jordan, ya dimos una buena caracterización en esta entrada. En los ejercicios encontrarás otra. Pero, ¿y si no tienen forma canónica de Jordan? Podríamos extender el campo a otro campo $G$ y comprar las formas canónicas ahí, pero en caso de existir la similaridad, sólo la tendremos en $M_n(G)$. Existe otra manera de expresar a una matriz en forma canónica, que se llama la forma canónica de Frobenius y precisamente está pensada para determinar si dos matrices son similares sin que sea necesario encontrar las raíces del polinomio característico, ni extender el campo.

Estos son sólo dos ejemplos de que la teoría de álgebra lineal es muy extensa. En caso de que estés interesado, hay mucho más por aprender.

Tarea moral

  1. Sea $A$ una matriz en $M_n(F)$ y tomemos $P$ en $M_n(F)$ la matriz
    $$P=\begin{pmatrix} 0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & \ldots & 1 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 1 & \ldots & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0 \end{pmatrix}.$$
    • Demuestra que si $A$ tiene columnas $C_1,\ldots, C_n$, entonces $AP$ tiene columnas $C_n, \ldots, C_1$.
    • Demuestra que si $A$ tiene filas $R_1,\ldots,R_1$, entonces $PA$ tiene filas $R_n,\ldots,R_n$.
    • Concluye con cualquiera de los incisos anteriores que $P$ es invertible y su inversa es ella misma.
    • Tomemos explicitamente $n=2$ y $A=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Encuentra explícitamente $PAP$. ¿Es $A^T$?
  2. ¿Cuál es la máxima cantidad de matrices que se pueden dar en $M_5(\mathbb{C})$ de manera que cada una de ellas tenga polinomio característico $x^2(x^2+1)(x+3)$ y tales que no haya dos de ellas que sean similares entre sí.
  3. Sea $A$ una matriz en $M_n(\mathbb{R})$ tal que su polinomio característico se divide en $\mathbb{R}$, con forma canónica de Jordan $J$. Sea $P(X)$ un polinomio en $\mathbb{R}[X]$.
    • Demuestra que el polinomio característico de $P(A)$ se divide en $\mathbb{R}$.
    • La forma canónica de Jordan de $P(A)$ no necesariamente será $P(J)$ pues puede que el polinomio altere el orden de los eigenvalores pero, ¿cómo se obtiene la forma canónica de $P(A)$ a partir de $J$?
  4. Sean $A$ y $B$ matrices en $M_n(F)$ cuyo polinomio característico se divide en $F$. Muestra que $A$ y $B$ son similares si y sólo si para cualquier polinomio $P(X)$ en $F[X]$ se tiene que $\text{rango}(P(A))=\text{rango}(P(B))$.
  5. Investiga sobre la forma canónica de Frobenius y sobre la variante a la forma canónica de Jordan restringida a $\mathbb{R}$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior II: Divisibilidad en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior hablamos del algoritmo de la división. Dados dos números enteros $a$ y $b$, con $b\neq 0$, nos permite poner de manera única a $a$ de la forma $a=qb+r$, en donde $q$ y $r$ son enteros, y además $0\leq r < |b|$. En otras palabras, nos permite poner a un número como «copias de otro», más un residuo «chiquito». En esta entrada hablaremos de la divisibilidad en los enteros.

La divisibilidad se da cuando pasa una situación especial en el algoritmo de la división: cuando el residuo obtenido es igual a cero. Es decir, cuando podemos escribir $a=qb$. Cuando esto sucede, diremos que $b$ divide a $a$, o bien que $a$ es múltiplo de $b$. En esta entrada daremos una definición formal que contemple este caso y estudiaremos varias de sus propiedades.

Definición de divisibilidad

La noción fundamental que estudiaremos en esta entrada es la de divisibilidad. La definición crucial es la siguiente.

Definición. Sean $m$ y $n$ enteros. Diremos que $m$ divide a $n$ si existe un entero $k$ tal que $n=km$. En notación, escribiremos $m|n$. También diremos que $n$ es un múltiplo de $m$, o bien que $n$ es divisible entre $m$.

Ejemplo. El número $35$ es divisible entre $5$ pues podemos encontrar un entero $k$ tal que $35=k\cdot 5$. Concretamente, podemos escribir $35=7\cdot 5$. Así mismo, este número también es divisible entre $-7$ pues podemos encontrar un entero $k$ tal que $35=k\cdot (-7)$, en concreto, podemos escribir $35=(-5)(-7)$.

Por otro lado, el $35$ no es múltiplo de $8$. ¿Cómo sabemos esto? Al hacer el algoritmo de la división obtenemos que $35=4\cdot 8 + 3$. Como esta es la única forma de escribir a $35$ como un múltiplo de $8$ más un residuo entre $0$ y $7$, entonces es imposible escribirlo como un múltiplo de $8$ más residuo $0$. En otras palabras, no es múltiplo de $8$.

$\triangle$

Propiedades básicas de divisibilidad

La siguiente proposición habla de algunas de las propiedades básicas de la divisibilidad. Las enunciaremos y daremos sus demostraciones para poner en práctica nuestra definición de divisibilidad.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Los enteros $1$ y $-1$ dividen a cualquier otro entero.
  • El entero $0$ es divisible por cualquier entero.
  • Es reflexiva, es decir para cualquier entero $n$ se tiene que $n|n$.
  • Es transitiva, es decir si $l,m,n$ son enteros tales que $l|m$ y $m|n$, entonces $l|n$.

Demostración. A continuación demostramos la demostración, inciso por inciso.

  • Recordemos que si $n$ es un entero, entonces $n=n\cdot 1$. Esto nos dice que $1$ divide a $n$. Además, por las propiedades de las operaciones en los números enteros tenemos lo siguiente:
    \begin{align*}
    n&=n\cdot 1\\
    &=n\cdot ((-1)\cdot (-1))\\
    &=(n\cdot (-1))\cdot (-1)\\
    &=(-n)\cdot (-1).
    \end{align*}
    Aquí estamos usando que $(-1)(-1)=1$, la asociatividad del producto en los números enteros y que $(-1)n=-n$. En resumen, obtenemos que $n=(-n)(-1)$, lo cual nos dice que $-1|n$.
  • Aquí notamos que para cualquier entero $n$ tenemos que $0=0\cdot n$. Así, $n|0$.
  • Anteriormente usamos que $n=n\cdot 1$ para concluir $1|n$. Así mismo, al usar $n=1\cdot n$ obtenemos que $n|n$.
  • Veamos la transitividad. Supongamos que $l,m,n$ son enteros tales que $l|m$ y $m|n$. Por definición de divisibilidad podemos encontrar enteros $q$ y $r$ tales que $m=ql$ y $n=rm$. Substituyendo el valor de $m$ de la primera igualdad en la segunda y usando asociatividad obtenemos que: $$n=rm=r(ql)=(rq)l.$$ Esto precisamente nos dice que $l|n$.

$\square$

Divisibilidad y operaciones en los enteros

La divisibilidad se comporta bien con las operaciones en los números enteros. En la siguiente proposición encontramos algunas de las propiedades que vuelven esto un poco más preciso.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Para enteros $l,m,n$, si $l|m$ y $l|n$, entonces $l|m+n$.
  • Para enteros $l,m,n$, si $l|m$, entonces $l|mn$.
  • Para enteros $l$, $a$, $b$, $c$, $d$ se cumple que si $l|m$ y $l|n$, entonces $l|am+bn$.

Demostración. Daremos la demostración inciso por inciso:

  • Como $l|m$ y $l|n$, por definición existen enteros $r$ y $s$ tales que $m=rl$ y $n=sl$. Al hacer la suma y usar la distributividad del producto sobre la suma obtenemos que $$m+n=rl+sl=(r+s)l.$$ Esto por definición está diciendo que $l$ divide a $m+n$.
  • Aquí podemos utilizar una propiedad anterior. Tenemos que $mn=nm$, por lo cual $mn$ es divisible entre $m$. Es decir, tenemos $l|m$ y $m|mn$. Así, por la transitividad de la divisibilidad, que ya probamos anteriormente, tenemos que $l|mn$.
  • Este inciso es consecuencia de los dos anteriores y, de hecho, ya no tenemos que usar la definición. Por el segundo inciso, como $l|m$, entonces $l|am$. Así mismo, como $l|n$, entonces $l|bn$. Finalmente, por el primer inciso, como $l|am$ y $l|bn$, entonces $l|am+bn$.

$\square$

Observa que si ponemos $a=1$ y $b=-1$ en la última propiedad obtenemos el siguiente corolario: si $l|m$ y $l|n$, entonces $l|m-n$.

Divisibilidad y orden en los enteros

Hay una tercera clase de propiedades que cumple la noción de divisibilidad: aquellas relacionadas con el orden en los enteros. Veamos esto.

Proposición. La noción de divisibilidad cumple las siguientes propiedades.

  • Si $m$ y $n$ son enteros distintos de cero tales que $m|n$, entonces $|m|\leq |n|$.
  • Si $m$ y $n$ son enteros positivos tales que $m|n$, entonces $m\leq n$.
  • Si $m$ y $n$ son enteros tales que $m|n$ y $n|m$, entonces $|m|=|n|$.

Demostración. Demostraremos la primera afirmación a detalle, pues a partir de ella salen las otras dos de manera prácticamente inmediata.

Tomemos dos enteros $m$ y $n$ tales que $m|n$. Por definición de divisibilidad, tenemos que existe un entero $k$ tal que $n=km$. Al tomar valor absoluto de esta expresión, obtenemos que $|n|=|km|$. Por propiedades del valor absoluto, tenemos que $|km|=|k||m|$. Como $n$ es distinto de cero, entonces $k$ también es distinto de cero, así que $|k|\geq 1$. De esta manera, tenemos la siguiente cadena de igualdades y desigualdades: $$|n|=|km|=|k||m|\geq 1\cdot |m| = |m|.$$

Esto es lo que queríamos demostrar.

Para el segundo inciso, como $m$ y $n$ son positivos, entonces entran en el caso del primer inciso. Además, por ser positivos tenemos $|m|=m$ y $|n|=n$. De este modo, por el primer inciso tenemos $m\leq n$.

En el tercer inciso primero tenemos que descartar algunos casos. Si $m=0$, entonces la divisibilidad $0|n$ nos dice que $n=k\cdot 0$ para alguna $k$ entera, pero entonces $n=0$ también, y entonces se cumple $|m|=0=|n|$. El caso $n=0$ es análogo. Ya descartados estos casos, podemos suponer que $m$ y $n$ son distintos de cero. Por el primer inciso tendríamos entonces $|m|\leq |n|$ y $|m|\geq |n|$. Así, $|m|=|n|$, como queríamos.

$\square$

Un ejemplo que usa varias propiedades de divisibilidad

¿Por qué es bueno recordar y saber cuándo usar propiedades de la divisibilidad? Porque nos permite simplificar ciertos problemas y resolverlos más fácilmente. Veamos un ejemplo.

Problema. Encuentra todos los divisores del número $12$.

Solución. Supongamos que $d$ es un divisor de $12$. Tenemos entonces que $|d|\leq |12|=12$, así, $d$ es un número entre $-12$ y $12$. Fuera de este rango no pueden existir divisores de $12$.

Por reflexividad tenemos que $12|12$. Por la propiedad de $1$ y $-1$ tenemos que $1|12$ y $-1|12$. Es fácil ver $12=2\cdot 6$ y $12=3\cdot 4$, así que $2$, $3$, $4$ y $6$ son todos ellos divisores de $12$. Los negativos de estos números también serán divisores entonces pues, por ejemplo, como $12=3\cdot 4$, también tenemos $12=(-3)(-4)$.

De este modo, hasta ahora hemos visto que $-12,-6,-4,-3,-2,-1,1,2,3,4,6,12$ son todos ellos divisores de $12$.

El $5$ claramente no es, pues al hacer el algoritmo de la división obtenemos $12=2\cdot 5 +2$, con residuo $2$. Entonces el $-5$ tampoco puede ser divisor.

Podríamos hacer lo mismo con $7,8,9,10,11$. Pero una forma fácil de ver que ninguno de ellos va a funcionar es que si intentáramos escribir $12=7k$, por ejemplo, se tiene que $k$ no puede ser $1$ (pues $12\neq 7$) y si ponemos $k\geq 2$ entonces el producto es al menos $14$, que ya se pasa de $12$. Así, ni estos números, ni $-7,-8,-9,-10,-11$ son divisores de $12$.

$\triangle$

Más adelante…

La noción de divisibilidad da pie a varios otros conceptos en la teoría de números enteros. Dentro de algunas entradas hablaremos de dos conceptos importantes: el de máximo común divisor y mínimo común múltiplo en los enteros. Sin embargo, antes de hacer esto tomaremos una pequeña desviación para hablar de un concepto un poco abstracto pero bastante útil: los ideales.

Tarea moral

  1. Encuentra todos los divisores del número $24$ (tanto los positivos, como los negativos) y verifica que en efecto cumplen con la definición dada en esta entrada.
  2. Encuentra contraejemplos para las siguientes afirmaciones:
    1. Si $l$, $m$ y $n$ son enteros tales que $l|m$ y $n|m$, entonces $l+n|m$.
    2. Si $l,m,n$ son enteros tales que $l|mn$, entonces o bien $l|m$ o bien $l|n$.
  3. Demuestra las siguientes dos propiedades de la noción de divisibilidad:
    1. Si $m$ y $n$ son enteros positivos tales que $m|n$ y $n|m$, entonces $m=n$.
    2. Si $m$ es divisor de $n$ con $n=km$, entonces $k$ también es divisor de $n$.
  4. Sean $m$ y $n$ enteros. Demuestra que $m$ divide a $n$ si y sólo si $m^2$ divide a $n^2$.
  5. Sea $n$ un entero positivo, $m$ un entero, $a_1,\ldots,a_n$ enteros y $b_1,\ldots,b_n$ enteros. Demuestra que si $m|b_i$ para todo $i=1,\ldots,n$, entonces $m| \sum_{i=1}^n a_ib_i$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

1.1. CAMPO Y SUBCAMPO: definiciones y ejemplos

Por Jennyfer Paulina Bennetts Castillo

El ser humano ha hecho un fascinante trabajo construyendo modelos para facilitar la resolución de problemas concretos. Muchos de estos problemas tienen un carácter lineal, es decir, pueden plantearse mediante ecuaciones lineales con coeficientes en algún «conjunto especial» de números y con unas cuantas variables.

El Papiro Rhind considera ecuaciones de primer grado y es el documento matemático más antiguo hallado.

Así es, nos facilitamos la vida reduciendo casi todo a «talachita»: operaciones. Y como buena rama de las matemáticas, esto de «operar» vamos a abstraerlo. Ya no sólo se tratará de números, si no de conjuntos (de «lo que sea») y operaciones («las que sean») que cumplan ciertas condiciones.

CAMPO

Definición: Sea $K$ un conjunto con dos operaciones binarias $+: K \times K \longrightarrow K$ y $\cdot: K \times K \longrightarrow K$. Decimos que $K$ es un campo (y a sus elementos los llamamos escalares) si se cumplen las siguientes propiedades:

  • $+$ es asociativa
    $\forall \alpha ,\beta ,\gamma \in K:$
    $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$
  • $+$ es conmutativa
    $\forall \alpha,\beta \in K:$
    $\alpha+\beta=\beta+\alpha$
  • Existe un neutro aditivo
    $\exists 0_K \in K:$
    $\forall \alpha \in K (0_K + \alpha = \alpha + 0_K = \alpha)$
  • Todo elemento $\alpha \in K$ tiene un inverso aditivo
    $\forall \alpha \in K:$
    $\exists (-\alpha) \in K (\alpha+ (-\alpha) = (-\alpha)+\alpha = 0_K)$
  • $\cdot$ distribuye a $+$
    $\forall \alpha,\beta,\gamma \in K:$
    $\alpha\cdot(\beta + \gamma)=\alpha\cdot\beta + \alpha\cdot\gamma$
  • $\cdot$ es asociativa
    $\forall \alpha,\beta,\gamma \in K:$
    $\alpha\cdot(\beta\cdot\gamma)=(\alpha\cdot\beta)\cdot\gamma$
  • $\cdot$ es conmutativa
    $\forall \alpha,\beta \in K:$
    $\alpha\cdot\beta=\beta\cdot\alpha$
  • Existe un neutro multiplicativo
    $\exists 1_K \not= 0_K \in K:$
    $\forall \alpha \in K (1_K \cdot \alpha = \alpha \cdot 1_K = \alpha)$
  • Todo elemento $\alpha \not= 0_K \in K$ tiene un inverso multiplicativo
    $\forall \alpha \not= 0_K \in K:$
    $\exists \alpha^{-1} \in K (\alpha \cdot \alpha^{-1} = \alpha^{-1} \cdot \alpha = 1_K)$

Nota: En un campo vectorial: los neutros (aditivo y multiplicativo) y los inversos (aditivos y multiplicativos) son únicos. Por ello, desde la definición se han denotado de esa manera. Como parte de la tarea moral al final de esta entrada encontrarás ideas para realizar las demostraciones de estas unicidades.

Nota: Para simplificar notación, el producto $\alpha\cdot\beta$ se suele denotar como $\alpha\beta$.

Nota: Si es necesario aclarar que las operaciones con las que se está trabajando están definidas en el campo $K$, se suelen denotar como $+_K$ y $\cdot_K$.

Ejemplos:

  • $\mathbb{R} , \mathbb{Q} , \mathbb{C}$
    con la suma y producto usual respectivamente
  • $\{y+y\sqrt{2} : x,y \in \mathbb{Q}\}$
    con la suma y el producto usual
  • $\mathbb{Z}_p = \{\overline {0},\overline {1},…,\overline {p-1}\}$
    donde $p$ es primo y $\forall \overline {x}, \overline {y} \in \mathbb{Z}_p$ las operaciones son
    $\overline {x} + \overline {y} = \overline {x+y}$
    $\overline {x} \cdot \overline{y} = \overline {x \cdot y}$
    con $x+y$ la suma usual en $\mathbb{Z}$, $x \cdot y$ el producto usual en $\mathbb{Z}$

¿Cómo funciona $\mathbb{Z}_n$ con $n \in \mathbb{N}$?

$\mathbb{Z}_n$ con $n\in\mathbb{N}^+$ es el conjunto llamado enteros módulo $n$ cuyos $n$ elementos son de la forma $\overline {k}$ $= \{a \in \mathbb{Z} | a \equiv k (mód\, n) \} = \{a \in \mathbb{Z} | a – k = mn, m \in \mathbb{Z} \}$. Es decir, la clase de $k$, con $k \in \mathbb{Z}$ es el conjunto de los números enteros $a$ tales que $a-k$ es múltiplo de $n$.

Obs *. $\overline {k} = \overline {l}$ para toda $l \equiv k$ $(mód\, n)$ pues los elementos de $\overline {k}$ son aquellos congruentes entre sí, módulo $n$.

Ejemplo concreto: $\mathbb{Z}_3$

Tenemos que $\mathbb{Z}_3 = \{ \overline {0}, \overline {1}, \overline {2} \} = \{ \{…, -9, -6, -3, 0, 3, 6, 9, … \}, $$\{…, -8, -5, -2, 1, 4, 7, 10, …\}, $$\{…, -7, -4, -1, 2, 5, 8, 11, … \} \}$

Comprobemos que $\mathbb{Z}_3$ es un campo con las operaciones definidas anteriormente.

Tabla de Cayley de $\mathbb{Z}_3$:

$+$$\overline {0}$$\overline {1}$$\overline {2}$
$\overline {0}$$\overline {0+0} = \overline {0}$$\overline {0+1} = \overline {1}$$\overline {0+2} = \overline {2}$
$\overline {1}$$\overline {1+0} = \overline {1}$$\overline {1+1} = \overline {2}$ $\overline {1+2} = \overline {3} = \overline {0}$
$\overline {2}$$\overline {2+0} = \overline {2}$$\overline {2+1} = \overline {3} = \overline {0}$$\overline {2+2} = \overline {4} = \overline {1}$
$\cdot$$\overline {0}$$\overline {1}$$\overline {2}$
$\overline {0}$$\overline {0 \cdot 0} = \overline {0}$$\overline {0 \cdot 1} = \overline {0}$$\overline {0 \cdot 2} = \overline {0}$
$\overline {1}$$\overline {1 \cdot 0} = \overline {0}$$\overline {1 \cdot 1} = \overline {1}$ $\overline {1 \cdot 2} = \overline {2} = \overline {2}$
$\overline {2}$$\overline {2 \cdot 0} = \overline {0}$$\overline {2 \cdot 1} = \overline {2}$$\overline {2 \cdot 2} = \overline {4} = \overline {1}$

Así, es fácil ver que:

  • $+$ y $\cdot$ son asociativas y conmutativas.
  • El único neutro aditivo es $\overline {0}$.
  • El único neutro multiplicativo es $\overline {1}$.
  • Dado $\overline {k} \in \mathbb{Z}_3$ su único inverso aditivo es $\overline {-k}$.
  • Dado $\overline {k} \not= \overline {0} \in \mathbb{Z}_3$ su único inverso multiplicativo es $\overline {k}$

Existencia y exhibición de inversos multiplicativos en $\mathbb{Z}_p$

Ahora veamos un resultado que será muy útil para entender por qué $\mathbb{Z}_n$ con $n \in \mathbb{N}^+$ es un campo si y sólo si $n$ es un primo y para saber cómo obtener el inverso multiplicativo de un elemento dado.

Sea $K=\mathbb{Z}_n$.
Sea $\overline{k}\not= 0_K\in K$. Con el fin de simplificar la demostración, tomaremos $k\in\{0,1,…,n-1\}$ recordando que, de este modo, estamos considerando cualquier posible elemento de $\mathbb{Z}_n$.
$\overline{k}$ tiene inverso $\overline{j}\in K$ si y sólo si

$\begin{align*}
&\overline{k}\cdot\overline{j}=\overline{1}\\
\Leftrightarrow &\overline{k\cdot j}=\overline{1}\tag{def. $\cdot_K$}\\
\Leftrightarrow &k\cdot j\,\equiv 1 (mód\, n)\tag{Obs *}\\
\Leftrightarrow &k\cdot j \,-\, 1 = qn, q \in \mathbb{Z}\tag{def. $a \equiv b (mód\, n)$}\\
\Leftrightarrow &k \cdot j + (-q) \cdot n = 1, (-q) \in \mathbb{Z}\\
\Leftrightarrow &(k,n)\text{ divide a } 1\tag{Prop.del máximo común divisor}\\
\therefore (k,n) = 1
\end{align*}$

Para que $K = \mathbb{Z}_n$ sea un campo, necesitamos que cada $\overline {k} \not= 0_K \in K$ tenga inverso multiplicativo. Por lo tanto se debe cumplir que $(k,n) = 1$ para toda $k \in \{ 0, 1, …, n-1 \}$. Notamos que si $n$ no fuera primo, entonces $n = ab$ con $2 \le a,b \le n-1$. De modo que existe $a \in \{ 1, …, n-1 \}$ tal que $(a,n) = a \not= 1$ y entonces en este caso $K = \mathbb{Z}_n$ no es un campo. A la inversa, si $K = \mathbb{Z}_p$ con $p$ un primo, entonces para cada $a \in \{1, …, n-1 \}$ tenemos que $(a,p)=1$, y por lo anterior $\overline {a}$ tiene un inverso multiplicativo. Así, $K = \mathbb{Z}_p$ es un campo.

Además, dado $\overline {k} \not= \overline {0} \in \mathbb{Z}_p$ con $p$ primo, sabemos, por ser $\mathbb{Z}_p$ un campo, que existe su inverso multiplicativo $\overline {j} \in \mathbb{Z}_p$ y se cumple que $(k,n) = 1$. Para encontrar el inverso multiplicativo de $\overline {k}$ bastaría encontrar $l,m \in \mathbb{Z}$ tales que $k \cdot l + m \cdot n = 1$, para lo cual podemos usar el algorimo de Euclides, y así obtendremos que si tomamos $j=l$, entonces $\overline {j}$ es el elemento que queríamos.

SUBCAMPO

Definición: Sean $K$ un campo y $\tilde {K} \subseteq K$. Decimos que $\tilde {K}$ es un subcampo de $K$ si $\tilde {K}$ con las operaciones restringidas de $K$ es por sí mismo un campo.

Ejemplos:

  • $\mathbb{Q}$ es un subcampo de $\mathbb{R}$
  • $\mathbb{R}$ es un subcampo de $\mathbb{C}$

Propiedad

  • Si $K$ es un campo, entonces cualquiera de sus elementos $\alpha$ cumple que
    $\alpha \cdot 0_K = 0_K$.

Demostración: Sea $\alpha \in K$.
Sea $(-\alpha) \in K$ su inverso aditivo.
Como $0_K$ es el neutro aditivo, $0_K + 0_K = 0_K$.
De donde,

$\begin{align*}
&\alpha \cdot (0_K + 0_K) = \alpha \cdot 0_K\\
\Rightarrow &\alpha \cdot 0_K + \alpha \cdot 0_K = \alpha \cdot 0_K\tag{distrib.}\\
\Rightarrow &(\alpha \cdot 0_K + \alpha \cdot 0_K) + (-(\alpha \cdot 0_K)) = \alpha \cdot 0_K + (-(\alpha \cdot 0_K))\tag{inv. ad.}\\
\Rightarrow &\alpha \cdot 0_K + (\alpha \cdot 0_K +( -(\alpha \cdot 0_K))) = \alpha \cdot 0_K + (-(\alpha \cdot 0_K))\tag{asociat.}\\
\Rightarrow &\alpha \cdot 0_K + 0_K = 0_K\tag{inv. ad.}\\
\Rightarrow &\alpha \cdot 0_K = 0_K\tag{neutro ad.}\\
\end{align*}$

Nota: Es por esta afirmación que se definen los inversos multiplicativos para los elementos distintos de $0_K$.

Característica de un campo

Definición: Sea $K$ un campo. Se le llama característica de $K$, y se denota como $car(K)$ al menor número natural $n$ tal que $\underbrace{1_K + … + 1_K}_{n} = 0_K$ si acaso existe.
En caso contrario, decimos que $car(K)$ es cero.

Obs. La característica de un campo no puede ser 1 (es decir, si no es cero, entonces es mayor o igual a 2) pues por definición $1_K \not= 0_K$. Y más que eso, resulta que si no es cero, entonces es un número primo.

Ejemplos:

  • $car(\mathbb{Z}_p) = p$
    donde $p$ es primo.

Justificación:
Sea $K = \mathbb{Z}_p = \{\overline {0},\overline {1},…,\overline {p-1}\}$ con cada uno de esos elementos distintos entre sí.
De modo que $p$ es el mínimo natural tal que $\underbrace{1_K + … + 1_K}_{p} = \underbrace{\overline{1} + … + \overline{1}}_{p}$
$= \overline {\underbrace{1 + … + 1}_{p}} = \overline{p} = \overline{0}$

  • $car(\mathbb{Q}) = car(\mathbb{R}) = car(\mathbb{C}) = 0$

Justificación:
Sea $K\in \{\mathbb{Q}, \mathbb{R},\mathbb{C} \}$.
$\underbrace{1_K + … + 1_K}_{n} = n \cdot (1_K) = n \not= 0_K$ $\forall n \in \mathbb{N}, n \not=0$

Propiedades

  • Si $K$ es un campo tal que $car(K) = 0$, entonces $K$ no tiene cardinalidad finita.

Demostración: Como $car(K) = 0$, entonces $\underbrace{1_K + … + 1_K}_{n} \not= 0_K \in K$ para cualquier $n \in \mathbb{N}$.
Así, $\{ 1_K, 1_K + 1_K, …, \underbrace{1_K + … + 1_K}_{n}, … \} \subseteq K$ y no es difícil concluir que cada uno de los elementos de este subconjunto son distintos, de modo que tiene cardinalidad no finita.

  • Si $K$ es un campo tal que $car(K) = 2$, entonces $\alpha + \alpha = 0_K$ para cualquier $\alpha \in K$.

Demostración: Por ser $1_K \in K$ el neutro aditivo de $K$ y por las propiedades de campo obtenemos que
$\alpha + \alpha = 1_K \cdot (\alpha + \alpha) = 1_K \cdot \alpha + 1_K \cdot \alpha =$$\alpha \cdot 1_K + \alpha \cdot 1_K = \alpha \cdot (1_K + 1_K)$
Como $car(K) = 2$, entonces $1_K + 1_K = 0_K$, por lo cual $\alpha \cdot (1_K + 1_K) = \alpha \cdot 0_K = 0_K$

  • En general, si $K$ es un campo tal que $car(K) = n \not= 0_K$, entonces $\underbrace{\alpha +…+ \alpha}_{n} = 0_K$ para cualquier $\alpha \in K$.

Demostración: Por ser $1_K \in K$ el neutro aditivo de $K$ y por las propiedades de campo obtenemos que
$\underbrace{ \alpha + … + \alpha }_{n} = 1_K \cdot (\underbrace{ \alpha + … + \alpha }_{n}) =$$\underbrace{ 1_K \cdot \alpha +…+ 1_K \cdot \alpha}_{n}= \underbrace{ \alpha \cdot 1_K +…+ \alpha \cdot 1_K}_{n} =$$\alpha \cdot ( \underbrace{ 1_K +…+ 1_K}_{n})$.
Como $car(K) = n$, entonces $\underbrace{ 1_K +…+ 1_K}_{n} = 0_K$, por lo cual $\alpha \cdot ( \underbrace{ 1_K +…+ 1_K}_{n}) = \alpha \cdot 0_K = 0_K$

Tarea Moral

Sea $K$ un campo. Demuestra la unicidad de:

  1. El neutro aditivo en $K$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sabemos por la definición de campo, que existe $0_K$ neutro aditivo.
    • Primero sup. que existe ${0_K}’ \in K$ que también lo es. Con el objetivo de demostrar que $0_K = {0_K}’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $0_K = 0_K + {0_K}’ = {0_K}’$
  1. Los inversos aditivos en $K$.
    Para lograrlo, se te sugiere realizar lo siguiente:
    • Sea $\alpha \in K$. Sabemos por la definición de campo, que existe $(-\alpha) \in K$ inverso aditivo de $\alpha$.
    • Primero sup. que existe $(-\alpha)’ \in K$ que también lo es. Con el objetivo de demostrar que $(-\alpha) = (-\alpha)’$.
    • Ahora justifica cada una de las siguientes igualdades:
      $(-\alpha) = (-\alpha) + 0_K = (-\alpha) + (\alpha + (-\alpha)’)$$= ((-\alpha) + (\alpha)) + (-\alpha)’$
    • Completa la demostración con las igualdades necesarias y justifícalas.
  1. El neutro multiplicativo en $K$.
    Para lograrlo, se te sugiere realizar igualdades análogas al neutro aditivo y justificar cada una.
  1. Los inversos multiplicativos en $K$.
    Para lograrlo, se te sugiere realizar igualdades análogas a los inversos aditivos y justificar cada una.

Más adelante…

Ahora el concepto de campo vamos a usarlo para obtener un nuevo concepto básico y central en este curso: espacio vectorial.

Entradas relacionadas

Seminario de Resolución de Problemas: Grupos, anillos y campos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En estas entradas hemos visto cómo distintas herramientas de álgebra nos pueden ayudar en la resolución de problemas. En las primeras dos entradas, hablamos de identidades algebraicas básicas y un par de avanzadas. Luego, hablamos de factorización en polinomios y del teorema de la identidad. Ahora platicaremos de cómo estructuras un poco más abstractas nos pueden ayudar. De manera particular, nos enfocaremos en aplicaciones de teoría de grupos a la resolución de problemas. Sin embargo, hacia el final de la entrada también hablaremos un poco acerca de anillos, dominios enteros y campos.

Teoría de grupos básica

Una de las nociones de álgebra abstracta más básicas, y a la vez más flexibles, es la de grupo. La teoría de grupos es muy rica y se estudia a profundidad en un curso de álgebra abstracta o álgebra moderna. Aquí veremos únicamente un poco de esta teoría y algunas aplicaciones a resolución de problemas. Comenzamos con la definición.

Definición. Un grupo es un conjunto no vacío $G$ con una operación binaria $\cdot$ que cumple lo siguiente:

  • Asociatividad: Para cualesquiera elementos $x,y,z$ en $G$ tenemos que $x\cdot (y\cdot z) = (x\cdot y) \cdot z$.
  • Neutro: Existe un elemento $e$ en $G$ tal que $x\cdot e = x = e\cdot x$ para todo elemento x.
  • Inversos: Para cada elemento $x$ en $G$, existe un elemento $y$ en $G$ tal que $x\cdot y = e = y\cdot x$.

Usualmente se simplifica la notación de la siguiente manera. Por un lado, en vez de poner el símbolo de producto, simplemente se ponen elementos consecutivos, por ejemplo $a\cdot b = ab$. Además, por la asociatividad, muchas veces no se ponen los paréntesis, de modo que expresiones como $(a\cdot b)\cdot c$ se escriben simplemente como $abc$, a menos que los paréntesis ayuden a entender un argumento.

Hay que tener cuidado con invertir el orden de factores. En grupos, no necesariamente sucede que la operación es conmutativa, es decir, que $ab=ba$ para todo par de elementos $a$ y $b$. Si $ab=ba$ decimos que $a$ y $b$ conmutan y si todo par de elementos de $G$ conmutan, decimos que $G$ es conmutativo. Un elemento siempre conmuta consigo mismo. Para $n$ un entero positivo definimos $a^n$ como el producto formado por $n$ veces el elemento $a$.

A partir de la definición se puede ver que el neutro es único, pues si hubiera dos neutros $e$ y $e’$ tendríamos $e=e\cdot e’=e’$, en donde primero usamos que $e’$ es neutro y después que $e$ lo es. Para $a$ en $G$, definimos $a^0$ como $e$.

En grupos se vale «cancelar». Por ejemplo, si $ab=ac$, entonces podemos multiplicar esta igualdad a la izquierda por un inverso $d$ de $a$ y obtendríamos $$b=eb=dab=dac=ec=c.$$ Del mismo modo, la igualdad $ba=ca$ implica $b=c$.

En particular, si $d$ y $d’$ son inversos de $a$, tenemos $da=e=d’a$, de donde $d=d’$. Esto muestra que los inversos también son únicos, así que al inverso de $a$ le llamamos $a^{-1}$. Observa que $e^{-1}=e$. Nota que si $a$ y $b$ son elementos de $G$, entonces $$ab(b^{-1}a^{-1})=aea^{-1}=aa^{-1}=e,$$ de modo que el inverso de un producto $ab$ es el producto $b^{-1}a^{-1}$. Para $n$ un entero positivo, definimos $a^{-n}$ como el inverso de $a^n$, que por lo anterior, es precisamente $(a^{-1})^n$. De hecho, ya definido $a^n$ para todo entero, se puede verificar que se satisfacen las leyes usuales de los exponentes.

Problema. Sean $a$ y $b$ dos elementos en un grupo $G$ con neutro $e$ tales que $aba=ba^2b$, $a^3=e$ y $b^{2021}=e$. Muestra que $b=e$.

Sugerencia pre-solución. Observa que si $a$ y $b$ conmutaran, entonces el resultado se deduce fácilmente de la primer igualdad. Así, intenta modificar el problema a demostrar que $a$ y $b$ conmutan. Para ello tienes que hacer un paso intermedio que necesita inducción.

Solución. Lo primero que veremos es que $a$ y $b^2$ conmutan. Poniendo una identidad entre ambas $b$ en el producto $ab^2$, tenemos que $$ab^2=abaa^{-1}b=ba^2ba^{-1}b.$$ De $a^3=e$, tenemos $a^{-1}=a^2$, así que siguiendo con la cadena de igualdades, \begin{align*}
ba^2ba^{-1}b&=ba^2ba^2b\\
&=ba^2aba\\
&=bba=b^2a.
\end{align*} Así, $ab^2=b^2a$.

Ahora veremos que $a$ y $b$ conmutan. Para ello, como $a$ y $b^2$ conmutan, tenemos que $a$ y $b^{2k}$ conmutan para cualquier entero $k$. Esto se puede probar por inducción. El caso $k=1$ es lo que ya probamos. Si es válido para cierta $k$, se sigue que $$ab^{2k+2}=b^{2k}ab^2=b^{2k+2}a.$$ Por hipótesis, $b^{2020}=b$, así que el resultado anterior nos dice que $a$ y $b$ conmutan.

Por esta razón, la primer hipótesis $aba=ba^2b$ se puede reescribir como $a^2b=a^2b^2$, que por cancelación izquierda da $e=b$, como queríamos mostrar.

$\square$

Subgrupos y órdenes

Dentro de un grupo pueden vivir grupos más pequeños.

Definición. Un subgrupo de un grupo $G$ es un subconjunto $H$ de $G$ que es un grupo con las operaciones de $G$ restringidas a $H$.

Para que $H$ sea subgrupo, basta con que no sea vacío y que sea cerrado bajo la operación de grupos y la operación «sacar inverso».

Por ejemplo, se puede ver que $\mathbb{Z}_{12}$, los enteros módulo $12$ con la suma, forman un grupo. De aquí, $H_1=\{0,3,6,9\}$ es un subgrupo y $H_2=\{0,4,8\}$ es otro.

Proposición. Si $a$ es un elemento de un grupo $G$, entonces o bien $$1,a, a^2, a^3,\ldots$$ son todos elementos distintos de $G$, o bien existe un entero positivo $n$ tal que $a^n=1$ y $1,a,\ldots,a^{n-1}$ son todos distintos. En este segundo caso, $\{1,a,\ldots,a^{n-1}\}$ es un subgrupo de $G$.

Sugerencia pre-demostración. Divide en casos. Luego, usa el principio de cancelación o las leyes de exponentes para grupos.

Demostración. Si todos los elementos son distintos, entonces no hay nada que hacer. De otra forma, existen $i<j$ tales que $a^j=a^i$, de donde por la ley de cancelación tenemos que $a^{j-i}=e$ y $j-i\geq 1$. Así, el conjunto de enteros positivos $m$ tales que $a^m=e$ es no vacío, de modo que por el principio de buen orden tiene un mínimo, digamos $n$.

Afirmamos que $$1,a,a^2,\ldots,a^{n-1}$$ son todos distintos. En efecto, de no ser así, como en el argumento de arriba existirían $0\leq i < j \leq {n-1}$ tales que $a^{j-i}=e$, pero $j-i\leq n-1$ sería una contradicción a la elección de $n$ como elemento mínimo.

Probemos ahora que $A=\{1,a,\ldots,a^{n-1}\}$ es subgrupo de $G$. Si tenemos $a^k$ y $a^l$ en $A$, su producto es $a^{k+l}$. Por el algoritmo de la división, $k+l=qn+r$, con $r\in \{0,\ldots,n-1\}$, de modo que $$a^ka^l=a^{qn+r}=(a^n)^qa^r=e^qa^r=a^r,$$ así que $A$ es cerrado bajo productos. Además, si $1\leq k\leq n-1$, entonces $1\leq n-k \leq n-1$ y $a^ka^{n-k}=a^n=e$. Así, $A$ es cerrado bajo inversos. Esto muestra que $A$ es subgrupo de $G$.

$\square$

En teoría de grupos, la palabra «orden» se usa de dos maneras. Por un lado si $G$ es un grupo, su orden $\text{ord}(G)$ es la cantidad de elementos que tiene. Por otro, dado un elemento $a$, el orden $\text{ord}(a)$ de $a$ es el menor entero positivo $n$ tal que $a^n=e$, si es que existe.

Definimos al subgrupo generado por $a$ como $$\langle a\rangle:=\{a^n:n\in \mathbb{Z}\}.$$ La proposición anterior dice que si $\langle a \rangle$ es finito, entonces es un subgrupo de $G$ de orden $\text{ord}(\langle a \rangle) = \text{ord}(a).$ A los grupos de la forma $\langle a \rangle$ se les llama cíclicos.

Teorema de Lagrange

Cuando estamos trabajando con grupos finitos, el orden de un subgrupo debe cumplir una condición de divisibilidad.

Teorema (de Lagrange). Sea $G$ un grupo finito y $H$ un subgrupo de $G$. Entonces $\text{ord}(H)$ divide a $\text{ord}(G)$.

No daremos la demostración de este teorema, pero veremos algunos corolarios que sirven en la resolución de problemas.

Proposición. Sea $G$ un grupo finito.

  • Si $\text{ord}(G)$ es un primo $p$, entonces $G$ es cíclico.
  • El orden de cualquier elemento $a$ de $G$ divide al orden de $G$, y por lo tanto $a^{\text{ord}(G)}=1$.
  • Si $a$ es un elemento de $G$ de orden $n$ y $a^m=e$, entonces $n$ divide a $m$.

Demostración. Para la primer parte, si tomamos un elemento $a$ de $G$ que no sea $e$, ya vimos que $\langle a \rangle$ es un subgrupo cíclico de $G$. Por el teorema de Lagrange, su orden debe dividir al primo $p$. Pero el orden de $\langle a \rangle$ es al menos $2$, así que el orden de $\langle a \rangle$ debe ser $p$ y por lo tanto $\langle a \rangle=G$.

Como vimos arriba, el orden de $a$ es el orden de $\langle a \rangle$, que divide a $G$. Así,
\begin{align*}
a^{\text{ord}(G)}&=(a^{\text{ord}{a}})^{\text{ord}(G)/ \text{ord}(a)}\\
&=e^{\text{ord}(G)/ \text{ord}(a)}\\
&=e.
\end{align*} Con esto queda probado el segundo punto.

Para el último punto, usamos el algoritmo de la división para escribir $m=qn+r,$ con $r$ entre $0$ y $n-1$. Tenemos que $$e=a^m=a^{qn+r}=a^r.$$ Por lo visto en la sección anterior, necesariamente $r=0$, así que $n$ divide a $m$.

$\square$

Veamos cómo se pueden aplicar algunas de las ideas anteriores a un problema de teoría de grupos concreto.

Problema. En un grupo $G$, tenemos elementos $a$ y $b$ tales que $a^7=1$ y $aba^{-1}=b^2$. Determina qué posibles valores puede tener el orden de $b$.

Sugerencia pre-solución. Conjetura una fórmula para $b^{2n}$ buscando un patrón. Establécela por inducción.

Solución. El orden de $a$ debe dividir a $7$, así que es o $1$ o $7$. Si es $1$, entonces $a=e$, por lo que por la hipótesis tenemos $b=b^2$. De aquí $b=e$, así que el orden de $b$ es $1$. La otra opción es que el orden de $a$ sea $7$.

Afirmamos que para todo entero $n$ se tiene que $a^nba^{-n}=b^{2^n}$. Esto se prueba inductivamente. Es cierto para $n=1$ por hipótesis. Si se cumple para cierta $n$ y elevamos la igualdad al cuadrado, tenemos que
\begin{align*}
b^{2^{n+1}}&=(b^{2n})^2\\
&=a^nba^{-n}a^nba^{-n}\\
&=a^nb^2a^{-n}\\
&=a^{n+1}ba^{-(n+1)},
\end{align*}

lo cual termina la inducción.

En particular, para $n=7$ tenemos que $a^7=a^{-7}=e$, por lo que $b=b^{2^7}$, y por lo tanto $b^{127}=e$. Como $127$ es primo, el orden de $b$ puede ser $1$ ó $127$.

$\square$

En realidad, en el problema anterior falta mostrar que en efecto existe un grupo que satisfaga las hipótesis, y para el cual el orden de $b$ sea exactamente $127$. Esto no lo verificaremos aquí.

Teoría de grupos en teoría de números

Lo que hemos platicado de teoría de grupos se vale para grupos en general. Cuando aplicamos estos resultados a grupos particulares, tenemos nuevas técnicas para resolver problemas. Uno de los casos que aparecen más frecuentemente es aplicar teoría de grupos en problemas de teoría de números.

Si tomamos un entero $n$, los enteros entre $1$ y $n-1$ que son primos relativos con $n$ forman un grupo con la operación de producto módulo $n$. Si llamamos $\varphi(n)$ a la cantidad de primos relativos con $n$ entre $1$ y $n-1$, el teorema de Lagrange da el siguiente corolario.

Teorema (de Euler). Para todo entero positivo $n$ y $a$ un entero primo relativo con $n$, se tiene que $$a^\varphi(n)\equiv 1\pmod n.$$

Como corolario al teorema de Euler, tenemos el pequeño teorema de Fermat, que hemos discutido previamente aquí en el blog.

Teorema (pequeño teorema de Fermat). Para $p$ un primo y $a$ un entero que no sea múltiplo de $p$, se tiene que $$a^{p-1}\equiv 1 \pmod p.$$

Así, cuando $p$ es primo y $a$ no es múltiplo de $p$, se tiene que el orden de $a$ divide a $p-1$. Veamos un ejemplo en donde esta idea forma parte fundamental de la solución.

Problema. Muestra que para ningún entero $n>1$ se tiene que $n$ divide a $2^n-1$.

Sugerencia pre-solución. Procede por contradicción, suponiendo que sí existe. Considera un primo $p$ que divida a $n$ y que además sea extremo en algún sentido. Trabaja módulo $p$.

Solución. Supongamos que existe un entero $n>1$ tal que $n$ divide a $2^n-1$. Sea $p$ el primo más pequeño que divide a $n$. Tomemos $a$ el orden de $2$ en el grupo multiplicativo $\mathbb{Z}_p$.

Por un lado, como $p$ divide a $n$ y $n$ divide a $2^n-1$, se tiene que $p$ divide a $2^n-1$ y por lo tanto $$2^n\equiv 1 \pmod p.$$ De esta forma, $a$ divide a $n$.

Por otro lado, por el pequeño teorema de Fermat, tenemos que $$2^{p-1}\equiv 1 \pmod p,$$ así que $a$ divide a $p-1$ y por lo tanto $a\leq p-1$.

Si $a\neq 1$, entonces $a$ tiene un divisor primo que divide a $n$ y es menor que $a\leq p-1$, lo cual es imposible pues elegimos a $p$ como el menor divisor primo de $n$. De esta forma, $a=1$. Pero esto da la contradicción $2\equiv 1 \pmod p$.

$\square$

Anillos, dominios enteros y campos

Cuando se están resolviendo problemas, es importante tener en mente que existen otras estructuras algebraicas. Definiremos sólo las más comunes y veremos un problema ejemplo.

Definición. Un anillo es un conjunto $R$ con dos operaciones binarias suma y producto tales que:

  • $R$ con la suma es un grupo conmutativo.
  • El producto en $R$ es asociativo, es decir $(ab)c=a(bc)$ para $a,b,c$ en $R$.
  • Se cumple la ley distributiva, es decir $a(b+c)=ab+ac$ y $(b+c)a=ba+ca$ para $a,b,c$ en $R$.

El producto en $R$ no tiene por qué ser un grupo. De hecho, ni siquiera tiene que tener neutro.

Definición. Si un anillo $R$ tiene neutro, decimos que $R$ es un anillo con $1$. Si la multiplicación de $R$ es conmutativa, decimos que $R$ es conmutativo.

Definición. Un dominio entero es un anillo conmutativo con uno en donde además se vale cancelar, es decir, $ab=ac$ implica $b=c$ y $ba=ca$ implica $b=c$.

Definición. Un campo es un anillo conmutativo con uno en donde cada elemento distinto de la identidad aditiva tiene inverso multiplicativo. En otras palabras, es un anillo en donde la suma y el producto son grupos.

Problema. Muestra que todo dominio entero finito es un campo.

Sugerencia pre-solución. Usa el principio de las casillas.

Solución. Supongamos que $R=\{a_1,\ldots,a_n\}$ es un dominio entero con una cantidad finita de elementos. Lo único que falta para que sea campo es que los elementos tengan inversos multiplicativos.

Sea $a$ un elemento de $R$ y supongamos que $a$ no tiene inverso multiplicativo. Entonces, los números $$a_1a, a_2a,\ldots,a_n a$$ sólo pueden tomar a lo más $n-1$ valores diferentes, de modo que por principio de las casillas existen dos de ellos que son iguales, digamos $a_ia=a_ja$ para $i\neq j$.

Como $R$ es dominio entero, se vale cancelar, lo cual muestra $a_i=a_j$. Esto es una contradicción, pues $a_i$ y $a_j$ eran elementos distintos de $R$. Así, todo elemento tiene inverso multiplicativo.

$\square$

En cursos de matemáticas a nivel superior se ven muchos ejemplos de estas estructuras algebraicas. En cursos de Álgebra Superior se construye el dominio entero de enteros $\mathbb{Z}$. Se construyen los campos $\mathbb{R}$, $\mathbb{Q}$ y $\mathbb{C}$. También, se construyen los anillos de polinomios $\mathbb{F}[x]$. La noción de campo es fundamental cuando se construye la teoría de Álgebra Lineal. Como se puede ver, la teoría de álgebra es muy amplia, así que esta entrada sólo queda como invitación al tema.

Más problemas

Puedes encontrar más problemas de estructuras algebraicas en la Sección 4.4 del libro Problem Solving through Problems de Loren Larson.