Archivo de la etiqueta: cambio de base

Álgebra Lineal I: Problemas de cambio de base

En las entradas anteriores platicamos acerca de matrices de cambio de base. Vimos cómo nos ayudan a pasar un vector expresado en una base a otra. También vimos cómo nos ayudan a entender una transformación lineal en bases distintas. En esta entrada, veremos algunos ejemplos para repasar estos conceptos.

Problema 1. Considera las familias de vectores B=\{v_1,v_2,v_3\}, B'=\{w_1,w_2,w_3\}, donde

    \[v_1=(0,1,1), \ v_2=(1,0,1), \ v_3=(1,1,0)\]

y

    \[w_1=(1,1,-1), \ w_2=(1,0,-1), \ w_3=(-1,-1,0).\]

  1. Prueba que B y B' son bases de \mathbb{R}^3.
  2. Encuentra la matriz de cambio de base P de B a B' usando la definición de P.
  3. Encuentra la matriz de cambio de base P usando la base canónica de \mathbb{R}^3 y la última proposición de esta entrada.

Solución. (1) Dado que \dim \mathbb{R}^3=3 y estas familias son de tres vectores, basta con demostrar que son vectores linealmente independientes. Una manera de hacerlo es formando la matriz obtenida al colocar a los vectores como renglones y reducirla hasta la matriz identidad I_3.

Para B, la matriz asociada es

    \[\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.\]

Haciendo los cálculos de la reducción, obtenemos que

    \[\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}\]


    \[\longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\]


Esto implica que los vectores en B son linealmente independientes y, por lo tanto, forman una base \mathbb{R}^3.

Para B', la matriz asociada es

    \[\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.\]

Reduciendo la matriz, tenemos que

    \[\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\]


Por lo tanto, B' también es una base de \mathbb{R}^3.

(2) Recordemos que la matriz de cambio de base P está definida como la matriz [p_{ij}] cuya columna j tiene como entradas a las coordenadas de w_j escrito en términos de la base B. Entonces, expresemos

(1,1,-1)=w_1=av_1+bv_2+cv_3=(b+c,a+c,a+b),

(1,0,-1)=w_2=dv_1+ev_2+fv_3=(e+f,d+f,d+e),

(-1,-1,0)=w_3=gv_1+hv_2+kv_3=(h+k,g+k,g+h),

obteniendo que

    \begin{align*}b+c&=1\\a+c&=1\\a+b&=-1\\e+f&=1\\d+f&=0\\d+e&=-1\\h+k&=-1\\g+k&=-1\\g+h&=0.\end{align*}

Si resolvemos el sistema anterior, concluimos que a=b=-\frac{1}{2}, c=\frac{3}{2}, d=-1, e=0, f=1, g=h=0, k=-1. Por lo tanto

P=\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & k  \end{pmatrix}= \begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1  \end{pmatrix}.

(3) Sea B''=\{e_1,e_2,e_3\} la base canónica de \mathbb{R}^3. Queremos encontrar la matriz de cambio de base denotada como \text{Mat}_B (B'). Usando la última proposición de la clase del lunes, tenemos que

\text{Mat}_B (B')=\text{Mat}_{B} (B'') \cdot \text{Mat}_{B''} (B')=(\text{Mat}_{B''} (B))^{-1} \cdot \text{Mat}_{B''} (B').

Por definición,

\text{Mat}_{B''} (B)=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \  \text{Mat}_{B''} (B')=\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.

Para calcular (\text{Mat}_{B''} (B))^{-1}, lo haremos como ya lo hemos visto en clases: pegando a la derecha una matriz identidad y aplicando reducción gaussiana:

    \begin{align*} &\left( \begin{array}{ccc|ccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 1 & 1 & -1 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & -1/2 & 1/2 & 1/2 \\ 0 & 1 & 0 & 1/2 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & 1/2 & -1/2 \end{array} \right). \end{align*}

Por lo tanto,

    \[(\text{Mat}_{B''}(B))^{-1}=\begin{pmatrix} -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix}.\]

Finalmente, usando la proposición, tenemos que

P=\text{Mat}_B (B')=\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}\cdot\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}

=\begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1 \end{pmatrix}.

Esto coincide con el cálculo que hicimos previamente.

\square

Problema 2. Considera la matriz

A=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}

y sea T:\mathbb{R}^3 \rightarrow \mathbb{R}^3 la transformación lineal asociada, es decir T(X)=AX para todo X\in\mathbb{R}^3. Considera los vectores

v_1=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ v_2=\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ v_3=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.

  1. Prueba que v_1,v_2,v_3 forman una base de \mathbb{R}^3 y calcula la matriz de T con respecto a esta base.
  2. Encuentra la matriz de cambio de base de la base canónica a la base \{v_1,v_2,v_3\}.
  3. Calcula A^n para todo entero positivo n.

Antes de ver la solución a este problema este problema, observa que sería muy difícil decir quién es A^{100} «a mano» si procedes directamente. Se tendrían que hacer muchas multiplicaciones matriciales, que son difíciles. Ten en mente esto cuando leas la solución de la parte 3.

Solución. (1) Dado que la dimensión de \mathbb{R}^3 es 3 y \{v_1,v_2,v_3\} son tres vectores, basta con demostrar que éstos son linealmente independientes para probar que forman una base. Sean a,b,c\in\mathbb{R} tales que av_1+bv_2+cv_3=0, entonces

a+b+c=0, \ a-c=0, \ -a-b=0

\Rightarrow a=c, -a=b, a-a+a=0 \Rightarrow a=0, c=0, b=0.

Entonces, son linealmente independientes y, por lo tanto, forman una base de \mathbb{R}^3.

Nota: Otra manera de demostrarlo es considerar la matriz formada por los vectores v_1,v_2,v_3 como sus columnas, reducirla y llegar a que la matriz reducida es la matriz identidad.

Ahora, para calcular la matriz de T con respecto a la nueva base, expresaremos T(v_1),T(v_2), T(v_3) en términos de v_1,v_2,v_3. Entonces tenemos que

T(v_1)=Av_1=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=v_1,

T(v_2)=Av_2=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}=\begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}=2v_2,

T(v_3)=Av_3=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=\begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}=3v_3.

Por lo tanto, la matriz que buscamos es

    \[B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.\]

(2) Lo haremos de la misma manera que en el inciso (2) del problema anterior, que consiste en escribir a los v_1,v_2,v_3 en la base canónica, pero ésto es obvio ya que están escritos de esa manera, por lo tanto

    \[P=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0  \end{pmatrix}.\]

(3) Sabemos que la matriz de T con respecto a v_1,v_2,v_3 (que nombramos en el inciso (1) como B) es igual a P^{-1}AP, gracias al último corolario de la sección «Matrices de cambio de base y transformaciones lineales» de la entrada anterior. Entonces

    \[P^{-1}AP=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.\]

Es fácil ver (pero lo pueden demostrar por inducción en n) que

    \[(P^{-1}AP)^n=(P^{-1}AP)(P^{-1}AP)\dots (P^{-1}AP)=P^{-1}A^n P.\]

Esto implica que P^{-1}A^n P=B^n, es decir

    \[P^{-1}A^n P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.\]

Multiplicando por P a la izquierda y por P^{-1} a la derecha, obtenemos que

    \[A^n=P\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}P^{-1} .\]

Para ello, nos falta calcular la inversa de P, y eso lo haremos como siempre lo hemos hecho: reduciendo la matriz. Entonces

    \begin{align*} &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right). \end{align*}

Como consecuencia, tenemos que

    \[P^{-1}=\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}.\]

Por lo tanto,

    \begin{align*}A^n &=P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} P^{-1}\\&=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}\end{align*}

A^n= \begin{pmatrix} 1-2^n+3^n & 1-2^n & 1-2^{n+1}+3^n \\ 1-3^n & 1 & 1-3^n \\ 2^n-1 & 2^n-1 & 2^{n+1}-1 \end{pmatrix}.

\square

El ejercicio anterior deja una moraleja importante de álgebra lineal: si tenemos una matriz A y logramos encontrar una matriz diagonal B similar a ella, entonces será fácil encontrar A^n. Para finalizar esta sesión, tenemos el siguiente problema.

Problema 3. Prueba que las matrices

    \[A=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ \text{y} \ B=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

son similares.

Solución. Para resolverlo usaremos el corolario visto en la clase de ayer, que dice (adaptándolo al problema):

Corolario. Sea T:\mathbb{R}^4\rightarrow \mathbb{R}^4 una transformación lineal. Sean B' y B'' bases de \mathbb{R}^4 y P la matriz de cambio de base de B' a B''. Entonces \text{Mat}_{B''}(T)=P^{-1} \text{Mat}_{B'}(T) P.

Si podemos encontrar una transformación T y bases B' y B'' tales que \text{Mat}_{B'}(T)=A y \text{Mat}_{B''} (T)=B, podemos calcular la matriz de cambio de base P, y satisface que B=P^{-1}AP, implicando que A y B sean matrices similares. Entonces, el problema se reduce a encontrar la transformación, las bases y calcular P.

Dado que \text{Mat}_{B'}(T)=A, si B' es la base canónica, es claro que la transformación T satisface que T(X)=AX para todo X\in\mathbb{R}^4.

Ahora, encontremos B''. Sea B''=\{ v_1,v_2,v_3,v_4 \} con

v_1=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}, v_2=\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}, v_3=\begin{pmatrix} x_3 \\ y_3 \\ z_3 \\ w_3 \end{pmatrix}, v_4=\begin{pmatrix} x_4 \\ y_4 \\ z_4 \\ w_4 \end{pmatrix}.

Dado que \text{Mat}_{B''}(T)=B, entonces satisface

T(v_1)=Av_1=v_1, \ T(v_2)=Av_2=2v_1+v_2,

T(v_3)=Av_3=3v_1+2v_2+v_3, \ T(v_4)=Av_4=4v_1+3v_2+2v_3+v_4.

Resolviendo lo anterior, obtenemos que

Av_1=\begin{pmatrix} x_1+y_1 \\ y_1+z_1 \\ z_1+w_1 \\ w_1 \end{pmatrix}=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix} \ \Rightarrow \ v_1=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix},

Av_2=\begin{pmatrix} x_2+y_2 \\ y_2+z_2 \\ z_2+w_2 \\ w_2 \end{pmatrix}=\begin{pmatrix} x_2+2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix} \ \Rightarrow \ v_2=\begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix},

Av_3=\begin{pmatrix} x_3+y_3 \\ y_3+z_3 \\ z_3+w_3 \\ w_3 \end{pmatrix}=\begin{pmatrix} x_3+5 \\ y_3+4 \\ z_3 \\ w_3 \end{pmatrix} \ \Rightarrow \ v_3=\begin{pmatrix} 1 \\ 5 \\ 4 \\ 0 \end{pmatrix},

y por último

Av_4=\begin{pmatrix} x_4+y_4 \\ y_4+z_4 \\ z_4+w_4 \\ w_4 \end{pmatrix}=\begin{pmatrix} x_4+9 \\ y_4+16 \\ z_4+8 \\ w_4 \end{pmatrix} \ \Rightarrow \ v_4=\begin{pmatrix} 1 \\ 9 \\ 16 \\ 8 \end{pmatrix}

Aquí estamos usando que los sistemas de ecuaciones que se obtienen tienen como variables libres a x_1,x_2,x_3,x_4, las cuales las estamos tomando todas ellas iguales a 1.

Estos vectores son linealmente independientes pues la matriz con ellos como columnas es triangular superior con entradas en la diagonal distintas de cero, de modo que su matriz reducida es la identidad. Como \mathbb{R}^4 es de dimensión 4 y B'' es un conjunto de cuatro vectores linealmente independientes, entonces B'' es una base. Más aún, B'' es una base tal que \text{Mat}_{B''} (T)=B, por construcción.

Finalmente, podemos calcular la matriz de cambio de base P de B' a B'', pero es fácil ya que B' es la base canónica, entonces

    \[P=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}.\]

Por propiedades de la matriz de cambio de base, sabemos que P es invertible. Entonces, para terminar la prueba, podemos encontrar P^{-1} y verificar que B=P^{-1}AP, o simplemente verificamos que PB=AP, y por lo tanto A y B son matrices similares. Lo haremos de la segunda manera. En efecto,

PB=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}

AP=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}.

Por lo tanto, A y B son matrices similares.

Nota: si calculas la inversa de P, obtienes como resultado que

    \[P^{-1}=\begin{pmatrix} 1 & -\frac{1}{2} & \frac{3}{8} & -\frac{5}{16} \\ 0 & \frac{1}{2} & -\frac{5}{8} & \frac{11}{16} \\ 0 & 0 & \frac{1}{4} & -\frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{8} \end{pmatrix}.\]

\square


Álgebra Lineal I: Cambios de base, parte 2

Introducción

En la entrada anterior definimos las matrices de cambio de base. Vimos algunas de sus propiedades básicas y mostramos cómo nos pueden ayudar para resolver el primero de los siguientes dos problemas.

  • Supongamos que tenemos dos bases B_1 y B_2 de un espacio vectorial V y que tomamos un vector v en V. Si ya sabemos la combinación lineal de elementos de B_1 que da v, ¿cómo podemos saber la combinación lineal de elementos de B_2 que da v? En otras palabras, ¿cómo podemos pasar a v de su expresión en base B_1 a su expresión en base B_2?
  • Supongamos que tenemos una transformación lineal T:V\to W entre dos espacios vectoriales V y W, dos bases B_1 y B_2 de V y dos bases C_1 y C_2 de W. Si ya sabemos qué le hace T a los elementos de V en términos de las bases B_1 y C_1, ¿cómo podemos saber qué hace T en términos de las bases B_2 y C_2?

El objetivo de esta entrada es ver cómo con las matrices de cambio de base también podemos resolver el segundo problema. Después de hacer esto, hablaremos de una noción fundamental en álgebra lineal: la de matrices similares.

Matrices de cambio de base y transformaciones lineales

Las matrices de cambios de base nos ayudan a entender a las matrices de transformaciones lineales en bases diferentes.

Teorema. Sea T:V\to W una transformación lineal entre espacios de dimensión finita V y W. Sean B_1 y B_2 bases de V, y C_1 y C_2 bases de W. Entonces

    \[\Mat_{C_2,B_2}(T) = \Mat_{C_2}(C_1)\Mat_{C_1,B_1}(T)\Mat_{B_1}(B_2).\]

Observa cómo la elección de orden en la notación está rindiendo fruto. En el lado derecho «van apareciendo las bases» en el «orden natural» C_2, C_1, B_1, B_2.

Demostración. Sean P=\Mat_{C_1}(C_2) y Q=\Mat_{B_1}(B_2). Por un resultado de la entrada anterior, P es la matriz que representa a la transformación identidad en W con respecto a las bases C_1 y C_2, es decir, P=\Mat_{C_1,C_2}(\text{id}_W).

Por cómo son las matrices de composiciones de transformaciones lineales, y usando que \text{id}_W\circ T=T, tenemos que

    \[\Mat_{C_1,C_2}(\text{id}_W)\Mat_{C_2,B_2}(T)=\Mat_{C_1,B_2}(T).\]

De manera análoga, Q es la matriz que representa a la transformación identidad en V con respecto a las bases B_1 y B_2, de donde tenemos que

    \[\Mat_{C_1,B_1}(T)\Mat_{B_1,B_2}(\text{id}_V)=\Mat_{C_1,B_2}(T).\]

De esta forma,

    \[P\Mat_{C_2,B_2}(T) = \Mat_{C_1,B_2}(T) = \Mat_{C_1,B_1}(T) Q.\]

El resultado se obtiene multiplicando por la izquierda ambos lados de esta ecuación por P^{-1}=\Mat_{C_2}(C_1).

\square

En la siguiente entrada se verán varios ejemplos que involucran crear matrices para transformaciones lineales, matrices de cambios de base y multiplicarlas para entender una transformación lineal en distintas bases.

Por el momento, dejamos únicamente un corolario del teorema anterior, para el caso en el que tenemos una transformación lineal de un espacio vectorial a sí mismo expresado en términos de dos bases.

Corolario. Sea T:V\to V una transformación lineal de un espacio vectorial V de dimensión finita a sí mismo. Sean B y B' bases de V y P la matriz de cambio de base de B a B'. Entonces

    \[\Mat_{B'}(T)=P^{-1}\Mat_{B}(T)P.\]

Matrices similares

Definición. Decimos que dos matrices A y B en M_{n}(F) son similares o conjugadas si existe una matriz invertible P en M_n(F) tal que B=P^{-1}AP.

En otras palabras, A y B son matrices similares si representan a una misma transformación lineal en diferentes bases.

Proposición. La relación «ser similares» es una relación de equivalencia en M_n(F).

Demostración. Toda matriz es similar a sí misma usando P=I_n, la identidad. Si A y B son similares con matriz invertible P, entonces B y A son similares con matriz invertible P^{-1}. Si A y B son similares con matriz invertible P y B y C son similares con matriz invertible Q, notemos que A=P^{-1}BP=P^{-1}(Q^{-1}CQ)P=(QP)^{-1}C(QP), de modo que A y C son similares con matriz invertible QP.

\square

¿Por qué es importante saber si dos matrices son similares? Resulta que dos matrices similares comparten muchas propiedades, como su traza, su determinante, su rango, etc. Para algunas matrices es más sencillo calcular estas propiedades. Así que una buena estrategia en álgebra lineal es tomar una matriz A «complicada» y de ahí encontrar una matriz similar B «más simple», y usar B para encontrar propiedades de A.

Veamos un ejemplo de esto. Mediante un sencillo argumento inductivo se puede mostrar lo siguiente.

Proposición. Si A y B son matrices similares con A=P^{-1}BP, entonces A^n=P^{-1}B^nP.

Si B fuera una matriz diagonal, entonces es fácil encontrar B^n: basta con elevar cada una de las entradas de su diagonal a la n (lo cual es mucho más fácil que hacer productos de matrices). Así, esto da una forma muy fácil de encontrar A^n: basta con encontrar B^n, y luego hacer dos multiplicaciones de matrices más, por P^{-1} a la izquierda y por P a la derecha.

Cuando A es una matriz similar a una matriz diagonal, decimos que A es diagonalizable. Una parte importante de lo que resta del curso consistirá en entender por qué las matrices simétricas con entradas reales son diagonalizables.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Deduce el corolario del teorema principal de esta entrada.
  • Considera \mathbb{R}[x]_2 de polinomios con coeficientes reales y grado a lo más dos. Sea T: \mathbb{R}[x]_2 la transformación tal qur T(p)=p', el polinomio derivado. Encuentra la matriz que representa a la transformación en la base \{1+x+x^2,1+2x,1\} y la matriz que representa a la transformación en la base \{1,x,x^2\}. Encuentra también la matriz de cambio de base de la primera a la segunda. Verifica que se cumple la conclusión del corolario.
  • Sean A y B matrices similares. Muestra que A es invertible si y sólo si B lo es.
  • Sean A y B matrices similares. Muestra que A y B tienen la misma traza.
  • Completa el argumento inductivo para demostrar la última proposición.
  • Considera la matriz con entradas complejas A=\begin{pmatrix}1 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -1 \end{pmatrix}. Encuentra A^{105}.