Archivo de la etiqueta: algebra

Álgebra Superior II: Problemas de exponencial, logaritmo y trigonometría en los complejos

Introducción

En entradas anteriores, vimos la construcción de los números complejos, sus operaciones y varias de sus características algebraicas. Conociendo ya las funciones exponencial y logaritmo, así como las funciones trigonométricas seno y coseno, vamos a iniciar con un breve análisis geométrico de la función exponencial. Posteriormente pasaremos a hacer unos ejercicios simples de operar dichas funciones en números complejos concretos.

Geometría de la exponencial compleja

Para empezar, estudiamos qué le hace la función exponencial al plano complejo de manera geométrica. Para hacer esto, tomamos varias rectas en el plano complejo para entender en qué se transforman tras aplicarles la función exponencial.

A grandes rasgos, cuando tomamos una recta vertical, la imagen de esta le da la vuelta al origen repetidamente. Cuando tomamos una recta horizontal, su imagen es un rayo que emana del origen (sin tocarlo).

En este video se explican estas ideas de manera visual.

Calcular una exponencial compleja

Lo siguiente que haremos es resolver un ejercicio de calcular la exponencial de un número complejo. Recuerda que, por definición, se tiene que

    \[e^{x+iy}=e^x\text{cis}(y).\]

Ejercicio. Expresa e^{4+\frac{\pi}{6}i} en la forma x+iy.

Problema de logaritmo complejo

Recuerda que el logaritmo complejo funciona como inverso de la función exponencial. Para que esto sea cierto, tenemos que restringir la exponencial a una franja del plano complejo.

Por definición, tenemos que

    \[L(z)=\ln \norm{z} + \text{arg}(z)i.\]

Para que la definición funcione bien, es necesario que tomemos el argumento en el intervalo (-\pi,\pi].

Resolveremos el siguiente ejercicio.

Ejercicio. Calcula L\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right).

Problema de trigonometría compleja

Por último, haremos un ejercicio de calcular una función trigonométrica compleja. Sólo necesitaremos la definición de la función coseno, pero por conveniencia, a continuación recordamos tanto la definición de seno, como la de coseno.

    \begin{align*}\cos(z)=\frac{e^{zi}+e^{-zi}}{2},\sin(z)=\frac{e^{zi}-e^{-zi}}{2}.\end{align*}

Con esto en mente, resolveremos el siguiente ejercicio.

Ejercicio. Calcula \cos\left(\frac{\pi}{2}+\frac{\pi}{2} i\right).

Más tarde les subo fotos por si alguien tiene dificultades para ver los videos.

Álgebra Superior II: Problemas de fórmula de De Moivre y raíces n-ésimas

Introducción

En una entrada anterior, vimos cómo se comporta la multiplicación en forma polar y cómo podemos aprovechar esto para hacer potencias. Concretamente, el teorema de De Moivre es muy útil para elevar complejos a potencias sin tener que hacer gran cantidad de productos.

Los primeros dos videos son ejercicios que ejemplifican lo anterior. Después, usamos lo que aprendimos en la entrada de raíces n-ésimas para resolver dos problemas más.

Al final, compartimos un enlace en el que puedes practicar más con operaciones de números complejos.

Problemas de fórmula de De Moivre

Para empezar, vemos dos problemas de exponenciación completa. El primero es una aplicación directa de la fórmula de De Moivre.

Problema. Usa el teorema de De Moivre para elevar a la potencia indicada

    \[\left(\sqrt{3}(\cos 25^\circ + i \sin 25^\circ\right)^6.\]

En algunos problemas es posible que sea necesario primero obtener la forma polar de un complejo antes de poder usar la fórmula de De Moivre. El segundo problema es un ejemplo de esto.

Problema. Encuentra el valor de (\sqrt{3}-i)^{12}.

Problemas de raíces n-ésimas

Si ahora, en vez de querer elevar a cierta potencia, queremos obtener raíces n-ésimas, con el uso de un poderoso teorema que dedujimos a partir de la fórmula de De Moivre, sabemos que son exactamente n raíces, y podemos calcularlas explícitamente. A continuación, vemos dos ejercicios que ejemplifican lo anterior.

Problema. Obtén las raíces cúbicas del complejo 3+4i.

Problema. Obtén las raíces quintas del complejo 16\sqrt{2}(-1+i).

Fotos de los ejercicios de hoy

Finalmente, les dejo fotos de lo resuelto en los videos, para quienes tengan dificultades para ver los videos. En la tercera foto no están tan desarrolladas las cuentas como en el video.

Problemas de fórmula de De Moivre, 1
Problemas de fórmula de De Moivre y de raíces
Problemas de raíces n-ésimas.

Más material de De Moivre y raíces

Puedes practicar más acerca de exponenciación y raíces complejas con los videos y ejercicios del tema en Khan Academy.

Álgebra Superior II: Exponencial, logaritmo y trigonometría en los complejos

Introducción

Con las entradas anteriores, ya hemos desarrollado un buen manejo de los números complejos. Sabemos cómo se construyen y cómo hacer operaciones básicas, incluyendo obtener conjugados, la forma polar, sacar normas y elevar a potencias. También hemos aprendido a resolver varias ecuaciones en los complejos: cuadráticas, sistemas lineales y raíces n-ésimas. Todo esto forma parte de los fundamentos algebraicos de \mathbb{C}. Ahora hablaremos un poco de la exponencial, el logaritmo y trigonometría en los complejos.

Aunque mencionaremos un poco de las motivaciones detrás de las definiciones, no profundizaremos tanto como con otros temas. Varias de las razones para elegir las siguientes definiciones tienen que ver con temas de ecuaciones diferenciales y de análisis complejo, que no se estudian sino hasta semestres posteriores.

Función exponencial compleja

Recordemos que para un real y, definimos \cis(y)=\cos y + i \sin y. La función \cis y la exponenciación en los reales nos ayudarán a definir la exponencial compleja.

Definición. Definimos la función \exp:\mathbb{C}\to \mathbb{C} como

    \[\exp(x+yi)=e^x\cis(y).\]

Ejemplo. Se tiene que

    \[\exp\left(1+\frac{\pi}{2} i\right) = e^1 \cis\left(\frac{\pi}{2}\right) = ei.\]

\square

Ejemplo. Se tiene que

    \[\exp(\pi i) = e^0\cis(\pi) = (1)(-1)=-1.\]

Como veremos más abajo, esto lo podemos reescribir como la famosa identidad de Euler

    \[e^{\pi i}+1=0.\]

\square

Ejemplo. Se tiene que

    \[\exp(2+3i)=e^2\cis(3).\]

Como \cos(3) y \sin(3) no tienen ningún valor especial, esta es la forma final de la expresión.

\square

Propiedades de la función exponencial compleja

Una buena razón para definir la exponencial así es que si y=0, entonces la definición coincide con la definición en los reales:

    \[\exp(x)=e^x\cis(0)=e^x.\]

Si x=0, tenemos que \exp(iy)=\cis(y), de modo que si w tiene norma r y argumento \theta, podemos reescribir su forma polar como

    \[w=r\exp(\theta i),\]

y una forma alternativa de escribir el teorema de De Moivre es

    \[w^n=r^n\exp(n\theta i).\]

Otra buena razón para definir la exponencial compleja como lo hicimos es que se sigue satisfaciendo que las sumas en la exponencial se abren en productos.

Proposición. Para w y z complejos se tiene que

    \[E(w+z)=E(w)E(z).\]

Demostración. Escribamos w=a+bi y z=c+di con a,b,c,d reales. Tenemos que

    \begin{align*}\exp(w+z)&=\exp((a+c)+(b+d)i)\\&=e^{a+c}\cis(b+d).\end{align*}

Por propiedades de la exponencial en \mathbb{R}, tenemos que e^{a+c}=e^ae^c. Además, por cómo funciona la multiplicación compleja en términos polares, tenemos que \cis(b+d)=\cis(b)\cis(d). Usando estas observaciones, podemos continuar con la cadena de igualdades,

    \begin{align*}&=e^ae^c\cis(b)\cis(d)\\&=(e^a\cis(b)) (e^c\cis(d))\\&=\exp(a+bi)\exp(c+di)\\&=\exp(w)\exp(z).\end{align*}

\square

Como \exp extiende a la exponencial real, y se vale abrir las sumas de exponentes en productos, puede ser tentador usar la notación e^{x+yi} en vez de \exp(x+yi). Hay que tener cuidado con esta interpretación, pues hasta ahora no hemos dicho qué quiere decir «elevar a una potencia». Cuando lo hagamos, veremos que usar la notación e^{x+yi} sí tiene sentido, pero por el momento hay que apegarnos a la definición.

Hay otras buenas razones para definir la exponencial compleja como lo hicimos. Una muy importante es que es la solución a una ecuación diferencial muy natural. Más adelante, en tu formación matemática, verás esto.

Función logaritmo complejo

Con el logaritmo natural \ln en \mathbb{R} y la multifunción argumento podemos extender el logaritmo a \mathbb{C}.

Definición. Definimos la función L:\mathbb{C}\setminus \{0\} \to \mathbb{C} como

    \[L(z)=\ln \Vert z \Vert + \arg(z) i.\]

Hay que ser un poco más precisos, pues \arg(z) es una multifunción y toma varios valores. Cuando estamos trabajando con logaritmo, lo más conveniente por razones de simetría es que tomemos el argumento en el intervalo (-\pi,\pi]. En cursos posteriores hablarás de «otras» funciones logaritmo, y de por qué ésta es usualmente una buena elección.

Ejemplo. Los logaritmos de i y de -1 son, respectivamente,

    \begin{align*}L(i)&=\ln \Vert i \Vert + \arg(i) i = \ln(1) + \frac{\pi}{2} i =\frac{\pi}{2} i\\L(-1)&=\ln \Vert -1 \Vert + \arg(-1) i = \ln(1)+\pi i = \pi i.\end{align*}

Propiedades del logaritmo complejo

La función \exp restringida a los números con parte imaginaria en (-\pi,\pi] es invertible, y su inversa es L. Esto justifica en parte la definición de logaritmo. Demostrar esto es sencillo y queda como tarea moral.

La función L restringida a los reales positivos coincide con la función logaritmo natural, pues para z=x+0i=x, con x>0 se tiene que \arg(x)=0 y entonces

    \[L(z)=L(x)=\Vert x\Vert+\arg(x)i=x.\]

Como en el caso real, la función logaritmo abre productos en sumas, pero con un detalle que hay que cuidar.

Proposición. Para w y z complejos no 0, se tiene que L(wz) y L(w)+L(z) difieren en un múltiplo entero de 2\pi i.

Con la función logaritmo podemos definir potencias de números complejos.

Definición. Para w,z en \mathbb{C} con w\neq 0, definimos

    \[w^z=\exp(zL(w)).\]

Ejemplo. En particular, podemos tomar w=e, de donde

    \begin{align*}e^z&=\exp(zL(e))\\&=\exp(z\ln(e))\\&=\exp(z),\end{align*}

de donde ahora sí podemos justificar usar la notación e^{x+yi} en vez de \exp(x+yi).

\square

Esta definición de exponenciación en \mathbb{C} es buena, en parte, porque se puede probar que se satisfacen las leyes de los exponentes.

Proposición. Para w, z_1, z_2 en \mathbb{C}, con w\neq 0, se cumple que

    \[z^{w_1+w_2}=z^{w_1}z^{w_2}\]

y que

    \[(z^{w_1})^{w_2}=z^{w_1w_2}.\]

La demostración es sencilla y se deja como tarea moral.

Funciones trigonométricas complejas

Finalmente, definiremos las funciones trigonométricas en \mathbb{C}. Para ello, nos basaremos en la función exponencial que ya definimos.

Definición. Para z cualquier complejo, definimos

    \[\cos(z)=\frac{e^{iz}+e^{-iz}}{2}\]

y

    \[\sin(z)=\frac{e^{iz}-e^{-iz}}{2}.\]

Una de las razones por las cuales esta definición es buena es que extiende a las funciones trigonométricas reales. En efecto, si z=x+0i=x es real, entonces \cos(z) es

    \begin{align*}\frac{e^{iz}+e^{-iz}}{2}&=\frac{\cis(x)+cis(-x)}{2}\\&=\frac{2\cos(x)}{2}\\&=\cos(x),\end{align*}

y de manera similar para \sin(z).

Las funciones trigonométricas en \mathbb{C} siguen cumpliendo varias propiedades que cumplían en \mathbb{R}.

Proposición. Para w y z complejos, se tiene que

    \begin{align*}\cos(w+z)=\cos(w)\cos(z)-\sin(w)\sin(z)\\\sin(w+z)=\sin(w)\cos(z)+\sin(z)\cos(w).\end{align*}

Demostración. Procedemos por definición. Tenemos que

    \begin{align*}4&\cos(w)\cos(z)\\&=(e^{iw}+e^{-iw})(e^{iz}+e^{-iz})\\&=(e^{i(w+z)}+e^{i(w-z)}+e^{i(z-w)}+e^{i(-z-w)})\end{align*}

y que

    \begin{align*}4&\sin(w)\sin(z)\\&=(e^{iw}-e^{-iw})(e^{iz}-e^{-iz})\\&=(e^{i(w+z)}-e^{i(w-z)}-e^{i(z-w)}+e^{i(-z-w)}),\end{align*}

de modo que

    \begin{align*}4(\cos(w)&\cos(z)-\sin(w)\sin(z))\\&=2(e^{i(w+z)}+e^{-i(w+z)})\\&=4\cos(w+z).\end{align*}

Dividiendo entre 4 ambos lados de la igualdad, obtenemos la primer identidad. La segunda se demuestra de manera análoga, y queda como tarea moral.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Determina los valores de \exp(3+\frac{3\pi}{4}i) y de L(-i).
  • Muestra que para z con parte imaginaria en (-\pi,\pi] se tiene que L(\exp(z))=z.
  • Determina el valor de (1+i)^{1+i}.
  • Muestra las leyes de los exponentes para la exponenciación en \mathbb{C}.
  • Determina el valor de \sin(i) y de \cos(1+i).
  • Muestra la identidad de seno de la suma de ángulos en \mathbb{C}.
  • Investiga qué otras propiedades de las funciones trigonométricas reales se extienden al caso complejo.

Álgebra Superior II: Multiplicación en forma polar y fórmula de De Moivre

Introducción

En la entrada anterior hablamos de las coordenadas rectangulares y polares de un número complejo. También, definimos la forma polar de un número complejo. En esta entrada hablaremos de cómo con la forma polar de los elementos de \mathbb{C} podemos entender fácilmente su multiplicación. Además, usaremos esto para demostrar la fórmula de De Moivre, que nos dice cómo encontrar las potencias de un complejo.

Como pequeño recordatorio, la forma polar del complejo z=x+iy es z=r(\cos \theta + i \sin \theta), en donde r es la norma de z y \theta es el ángulo que hace con el eje real positivo, pensándolo como el punto (x,y). Esto queda resumido por la siguiente figura:

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

Forma polar, multiplicación y recordatorio trigonométrico

Para ver cómo la forma polar de los complejos nos ayuda a entender la multiplicación en \mathbb{C}, necesitamos recordar las siguientes fórmulas trigonométricas

    \begin{align*}\sin (\alpha+\beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha\\\cos(\alpha+\beta) = \cos \alpha \cos \beta - \sin \beta \sin \alpha.\end{align*}

Si tenemos dos números complejos en forma polar

    \begin{align*}w&=r (\cos\alpha+ i \sin \alpha)\\z&=s(\cos \beta + i \sin \beta)\end{align*}

y los multiplicamos con la definición, su producto tendría parte real

    \[rs(\cos\alpha\cos \beta - \sin \alpha\sin \beta) = rs\cos (\alpha+\beta)\]

y parte imaginaria

    \[rs(\sin \alpha \cos \beta+ \sin\beta\cos\alpha)=rs\sin (\alpha+\beta).\]

Además, como la norma es multiplicativa, tenemos que la norma de wz es rs. Con esto mostramos que la forma polar de wz es exactamente

    \[wz=(rs)(\cos(\alpha+\beta)+i\sin(\alpha+\beta)).\]

Esto queda resumido en el siguiente resultado

Proposición. Si tenemos dos números complejos en forma polar

    \begin{align*}w&=r \text{cis}(\alpha)\\z&=s\text{cis}(\beta),\end{align*}

entonces la forma polar del producto es

    \[wz=rs\text{cis}(\alpha\beta).\]

Otra forma de decirlo es que «al multiplicar complejos, multiplicamos normas y sumamos argumentos». Podemos también ver el resultado de forma geométrica mediante la siguiente figura, en donde marcamos con rojo y azul los factores, y con negro al producto.

Interpretación geométrica de la multiplicación en los complejos
Interpretación geométrica de la multiplicación en los complejos

Ejemplo. Vamos a encontrar la forma rectangular del producto de los complejos

    \begin{align*}w&=7\left \text{cis} \left(\frac{2\pi}{5}\right) \quad \text{y}\\z&=2\left \text{cis} \left(\frac{3\pi}{5}\right).\end{align*}

Por la proposición anterior, el producto es exactamente el complejo

    \begin{align*}14 \text{cis}\left(\frac{2+3}{5}\pi \right)=14 \text{cis} (\pi).\end{align*}

Esta es la forma polar del producto. Por un problema anterior, sabemos que \text{cis}(\pi)=-1, de modo que la forma rectangular del producto es -14.

Si tenemos un complejo no nulo en forma polar, es fácil entender a su inverso multiplicativo. Esto está dado por la siguiente proposición, cuya demostración es sencilla y se deja como tarea moral.

Proposición. Sea w\neq 0 un complejo con forma polar w=r\text{cis}(\theta). Su inverso multiplicativo es el complejo r^{-1}\text{cis}(-\theta).

Ejemplo. Determinemos el inverso multiplicativo del complejo

    \[w=\sqrt{3}\text{cis}\left(\frac{3\pi}{7}\right).\]

Para ello, basta usar la proposición anterior, de donde

    \[w^{-1}=\frac{1}{\sqrt{3}} \text{cis}\left(-\frac{3\pi}{7}\right)=\frac{\sqrt{3}}{3}}\text{cis}\frac{11\pi}{7}.\]

Fórmula de De Moivre

La proposición para multiplicación de complejos se vuelve todavía más útil si la usamos iteradamente para hacer potencias de complejos.

Teorema (fórmula de De Moivre). Si z es un complejo de norma r y argumento \theta y n es un entero positivo, entonces z^n es el complejo de norma r^n y argumento n\theta. En otras palabras, si z=r(\cos \theta + i \sin \theta)=r\text{cis}(\theta), entonces

    \[z^n=r^n (\cos (n\theta)+i\sin (n\theta))= r^n \text{cis} (n\theta).\]

Demostración. Procedemos por inducción sobre n. El caso n=1 es inmediato. Supongamos que el resultado es cierto para n, es decir, que

    \[z^n=r^n \text{cis} (n\theta).\]

Por hipótesis inductiva, tenemos entonces que la norma de z^n es r^n, de modo que z^{n+1}=z^n z tiene norma r^nr=r^{n+1}.

También por hipótesis inductiva, z^n tiene argumento n\theta. Por cómo funciona la multiplicación compleja, el argumento de z^{n+1}=z^n z es la suma de los argumentos de z^n y z, es decir, n\theta + \theta = (n+1)\theta. Esto muestra que

    \[z^{n+1}=r^{n+1}\text{cis}((n+1)\theta),\]

y con esto acabamos el paso inductivo.

\square

Ejemplos de aplicación de fórmula de De Moivre

Ejemplo. Veremos quién es la décima potencia del complejo

    \[z=\sqrt{3}\text{cis} \left(\frac{4\pi}{5}\right).\]

Como este número ya está escrito en forma polar, podemos aplicarle directamente la fórmula de De Moivre:

    \begin{align*}z^{10}&=3^{10/2} \text{cis}\left(\frac{40\pi}{5}\right)\\&=3^5 \text{cis} (8\pi)\\&=3^5\\&=243.\end{align*}

\square

El ejemplo anterior nos dice que z^{10}=243. En otras palabras, z es una raíz 10-ésima de 243. Pero existen otras raíces 10-ésimas de 243, por ejemplo, tiene dos raíces reales \sqrt[10]{243} y -\sqrt[10]{243}. ¿Cuántas raíces tiene entonces en total? ¿Quiénes son? Esto lo veremos en la siguiente entrada.

Veamos otro ejemplo en el que se aplica la fórmula de De Moivre.

Problema. Evalúa la expresión (1+i)^{30}, expresando el resultado final en forma rectangular.

Solución. Comenzamos expresando a (1+i) en forma polar. Para ello, notamos que \Vert 1+i \Vert = \sqrt{2}, y que 1+i hace un ángulo de \frac{\pi}{4} con el eje real positivo. Por el teorema de De Moivre, tenemos que

    \begin{align*}z^{30}&=\sqrt{2}^{30}\text{cis}\left(\frac{30\pi}{4}\right)\\&=2^{15}\text{cis}\left(\frac{6\pi}{4} \right) \\&=2^{15}\text{cis}\left(\frac{3\pi}{2} \right) \\&=2^{15}(-i)\\&=-2^{15}i.\end{align*}

En la segunda igualdad usamos que \frac{30\pi}{4} y \frac{6\pi}{4} difieren en un múltiplo entero de 2\pi. En la cuarta usamos la forma polar de -i.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que para un complejo z\neq 0 escrito en forma polar z=r\text{cis}(\theta), su inverso multiplicativo tiene forma polar r^{-1}\text{cis} (-\theta).
  • Evalúa la multiplicación wz, donde w=2\text{cis}\left(\frac{5\pi}{7}\right) y z=-5\text{cis}\left(\frac{7\pi}{5}\right). Expresa la respuesta forma polar.
  • Haz la multiplicación wz, donde w=3\text{cis}\left(\frac{\pi}{2}\right) y z=4\text{cis}\left(\frac{\pi}{3}\right). Expresa la respuesta en forma rectangular.
  • Sea z=7\text{cis}\left(\frac{5\pi}{7}\right). Expresa z^3 en forma polar.
  • Sea z=\sqrt[3]{5} \text{cis}\left(\frac{\pi}{3}\right). Expresa z^9 en forma rectangular.
  • Toma el complejo z=-2+2i. Evalúa la expresión

        \[1+z+\ldots+z^{29}.\]

    Sugerencia: Usa primero la fórmula de suma de términos de una sucesión geométrica, y después la fórmula de De Moivre.

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.

Álgebra Superior II: Cambios de coordenadas y forma polar de un complejo

Introducción

En las entradas anteriores comenzamos a hablar acerca de cómo resolver algunas ecuaciones en \mathbb{C}. Platicamos de ecuaciones cuadráticas y la fórmula general. Luego, vimos sistemas de ecuaciones lineales y varios métodos para resolverlos. Lo siguiente que haremos es resolver ecuaciones de la forma z^n=w, en donde w en \mathbb{C} y n en \mathbb{N} están dados, y z es la variable a determinar. Antes de resolver esa ecuación, necesitamos entender mejor la multiplicación en \mathbb{C}, y para ello necesitamos estudiar la forma polar de un complejo.

Por eso, en esta entrada comenzaremos recordando las coordenadas rectangulares de un número complejo y definiremos sus coordenadas polares. Veremos cómo pasar entre coordenadas rectangulares y polares de manera biyectiva, con lo cual podremos definir qué es la forma polar.

Más adelante, la forma polar nos ayudará a entender mejor la geometría de la multiplicación en \mathbb{C} y de la exponenciación. Esto será muy útil cuando queramos «sacar raíces n-ésimas», lo cual necesitaremos para resolver ecuaciones del estilo z^n=w.

De coordenadas rectangulares a coordenadas polares

Tomemos un número complejo z=x+yi y pensémoslo como un punto del plano complejo, es decir, como el punto (x,y) . Diremos que (x,y) son las coordenadas rectangulares de z. Es recomendable recordar la siguiente figura, y regresar a ella frecuentemente.

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

El complejo z tiene norma r=\sqrt{x^2+y^2}. Además, si z\neq 0, tenemos que z define un ángulo \theta con el eje real positivo, al cual le llamaremos el argumento de z y lo denotaremos por \text{arg}(z). Todos los ángulos que manejaremos están en radianes.

Sin embargo, este ángulo no es único. El complejo z define al ángulo \theta pero, por ejemplo, también define al ángulo \theta+2\pi, pues la suma de 2\pi corresponde a dar una vuelta completa alrededor del origen. Por ello, pensaremos que el argumento de z toma todos los valores

    \[\{\theta+2k\pi:k\in \mathbb{Z}\}.\]

Así, \text{arg}(z) es una multifunción, algo así como una función, pero que toma varios valores. Cuando digamos que un complejo tiene argumento \theta, nos referiremos a \theta o cualquier otro ángulo que difiera un múltiplo entero de 2\pi Más adelante hablaremos de esto con detalle.

Aunque haya varios ángulos que le correspondan a z, hay uno único en el intervalo [0,2\pi).

Definición. Definimos las coordenadas polares de un complejo z=x+yi como sigue:

  • Si z=0, sus coordenadas polares son (0,0).
  • Si z\neq 0, entonces tomemos r=\Vert z \Vert = \sqrt{x^2+y^2} y \theta el único ángulo en [0,2\pi) que hace z con el eje real positivo. Las coordenadas polares de z son (r,\theta).

Observa que r siempre es no negativo y es cero y y sólo si z=0. Observa además por trigonometría que para el ángulo \theta se cumple que

    \begin{align*}\sin \theta &= \frac{y}{r}\\ \cos \theta &= \frac{x}{r},\end{align*}

lo cual nos da una forma práctica para encontrar \theta:

  • Calculamos \frac{y}{r} o \frac{x}{r} (el que parezca más sencillo).
  • Aplicamos una función trigonométrica inversa para reducir el problema a dos opciones.
  • Elegimos la opción correcta de acuerdo al signo de x o y.

Ejemplo. Tomemos al complejo z=3-3\sqrt{3}i. Vamos a pasarlo a forma polar. Su norma es \sqrt{9+27}=\sqrt{36}=6. Para determinar el ángulo \theta que define con el eje real, podemos notar que

    \[\cos{\theta}=\frac{3}{6}=\frac{1}{2},\]

así que \theta = \frac{\pi}{3} ó \theta= 2\pi-\frac{\pi}{3}=\frac{5\pi}{3}, pues son los únicos ángulos en [0,2\pi) con ese coseno. Como la parte imaginaria es negativa, se da el segundo caso. Por lo tanto, las coordenadas polares de z son \left(6,\frac{5\pi}{3}\right).

\square

De coordenadas polares a coordenadas rectangulares

También hay una forma de pasar de coordenadas polares a coordenadas rectangulares. En efecto, tomemos un real no negativo r y consideremos la pregunta ¿quienes son los números complejos de norma r?

Por un lado, si r=0, necesitamos que x^2+y^2=0^2=0, de donde x=y=0, así que las coordenadas rectangulares deben ser (0,0). Por otro lado, si r>0, se necesita que

    \[x^2+y^2=r^2,\]

lo cual, por el teorema de Pitágoras, define una circunferencia de radio r con centro en el origen.

Circunferencia de complejos de norma r.
Circunferencia de complejos de norma r

Si además elegimos un ángulo \theta en [0,2\pi) que el complejo haga con el eje real, el complejo queda determinado de manera única. Supongamos que este complejo es z=x+yi

Por trigonometría, tenemos que

    \begin{align*}x&=r\cos \theta\\ y &= r\sin \theta.\end{align}

Problema. Determina en la forma x+yi al número complejo cuyas coordenadas polares son \left(7,\frac{3\pi}{4}\right).

Solución. Usamos las fórmulas obtenidas arriba. Tenemos que

    \begin{align*}\\x&=7\cos \frac{3\pi}{4}=7\cdot \left(-\frac{1}{\sqrt{2}}\right)=-\frac{7}{\sqrt{2}}\\y &= 7\sin  \frac{3\pi}{4}= 7\cdot \frac{1}{\sqrt{2}}=\frac{7}{\sqrt{2}}.\end{align}

De este modo, el complejo buscado es el

    \[-\frac{7}{\sqrt{2}}+\frac{7}{\sqrt{2}}.\]

\square

Los cambios de coordenadas son inversos entre sí

La primer sección explica cómo de coordenadas rectangulares podemos pasar a coordenadas polares. La anterior dice cómo pasar de coordenadas polares a rectangulares. Resulta que estas operaciones son inversas la una de la otra:

Proposición. Si tomamos coordenadas polares (r,\theta) de un complejo, las pasamos a coordenadas rectangulares (x,y) y luego éstas las pasamos a coordenadas polares (r',\theta') de nuevo, tenemos que

    \[(r,\theta)=(r',\theta').\]

Demostración. En el caso r=0, sólo definimos coordenadas polares con \theta=0. Al ir a coordenadas rectangulares vamos al punto (0,0), que de nuevo regresa a polares (0,0). Podemos suponer entonces que r>0.

Como mencionamos en la segunda sección, las coordenadas rectangulares correspondientes a (r,\theta) son exactamente

    \[(x,y)=(r\cos \theta,r\sin \theta).\]

Pasemos este complejo a coordenadas polares (r',\theta'). Usando la identidad pitagórica \cos ^2\theta + \sin^2 \theta = 1, la norma de este complejo es

    \begin{align*}\sqrt{r^2\cos^2\theta+r^2\sin^2 \theta} &= r\sqrt{\cos ^2\theta +\sin^2 \theta}\\&=r\sqrt{1}\\&=r,\end{align}

lo que prueba r=r'. Además, como discutimos en la primer sección, tenemos que

    \begin{align*}\sin \theta' = \frac{r\sin \theta}{r} = \sin \theta\\\cos \theta' = \frac{r\cos \theta}{r}=\cos \theta.\end{align*}

De esta forma, \theta y \theta' son ángulos en [0,2\pi) con el mismo seno y coseno, lo cual implica \theta=\theta'.

\square

Corolario. El cambio de coordenadas rectangulares a polares , visto como una función de

    \[\mathbb{R}\times \mathbb{R}\]

a

    \[(\mathbb{R}^+\times [0,2\pi))\cup \{(0,0)\}\]

es biyectivo.

La forma polar de un número complejo

En las secciones anteriores pensamos a los complejos como parejas ordenadas. Podemos regresar los resultados obtenidos a la forma x+yi de los complejos para justificar la siguiente definición.

Definición. La forma polar de un número complejo z=x+yi es z=r(\cos \theta + i\sin \theta), donde (r,\theta) son las coordenadas polares de (x,y).

Por costumbre, en la forma polar se pone i antes de \sin \theta, a diferencia de la forma rectangular, en donde se pone i después de y. A veces en expresiones como las de la forma polar aparecen ángulos \theta fuera del rango [0,2\pi). Podemos hacer las cuentas que necesitemos fuera de este rango sin problema. Al final podemos sumar o restar un múltiplo entero de 2\pi para caer en el rango [0,2\pi). Esto no cambia el seno ni coseno del ángulo, por lo que no cambia al complejo.

Como la expresión \cos \theta + i\sin \theta se usa mucho, usualmente se abrevia.

Definición. Para un ángulo \theta definimos \text{cis}(\theta) = \cos \theta + i \sin \theta.

Problema. Determina la forma polar de los complejos 1, -1, i y -i.

Solución. Todos estos números tienen norma 1. Además, hacen ángulos 0, \pi, \frac{\pi}{2}, \frac{3\pi}{2} con el eje real positivo, respectivamente. De esta forma, sus coordenadas polares son

    \begin{align*}(1,0)\quad (1,\pi)\quad\left(1,\frac{\pi}{2}\right)\quad \left(1,\frac{3\pi}{2}\right),\end{align*}

respectivamente.

De esta forma, la forma polar de cada uno es:

    \begin{align*}1&=\cos 0+i \sin 0=\text{cis} (0)\\-1&=\cos \pi + i \sin \pi =  \text{cis} (\pi) \\i&=\cos \frac{\pi}{2} + i \sin  \frac{\pi}{2} =  \text{cis} \left(\frac{\pi}{2}\right)\\-i&= \cos \frac{3\pi}{2} + i \sin  \frac{3\pi}{2} = \text{cis}  \left( \frac{3\pi}{2}\right). \end{align*}

\square

Una aclaración muy importante es que la forma polar de z=x+yi no es r+\theta i. La forma polar es exactamente el mismo número complejo que el original, simplemente escrito de manera diferente.

Si la forma polar de un complejo es exactamente el mismo número que el original, ¿de qué nos sirve tenerlo en coordenadas polares? Resulta que la multiplicación compleja se entiende mucho mejor en términos de la forma polar. En la siguiente entrada veremos esto y cómo lo podemos usar para encontrar potencias de números complejos fácilmente.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Determina la forma polar de los siguientes complejos: 7-7i y -2+2\sqrt{3}i.
  • Determina la forma rectangular de los complejos con coordenadas polares \left(2,\frac{\pi}{3}\right) y \left(1, \frac{11\pi}{6}\right).
  • Si la forma polar del complejo z es r\text{cis} \theta, ¿quién es la forma polar del conjugado?
  • ¿Cuáles son aquellos números complejos que se obtienen al variar \theta en la forma polar 3\text{cis}(\theta)?
  • ¿Qué figura en el plano definen aquellos números complejos que se obtienen al variar r en la forma polar r\text{cis}(\pi)?

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.