Seminario de Resolución de Problemas: Grupos, anillos y campos

Introducción

En estas entradas hemos visto cómo distintas herramientas de álgebra nos pueden ayudar en la resolución de problemas. En las primeras dos entradas, hablamos de identidades algebraicas básicas y un par de avanzadas. Luego, hablamos de factorización en polinomios y del teorema de la identidad. Ahora platicaremos de cómo estructuras un poco más abstractas nos pueden ayudar. De manera particular, nos enfocaremos en aplicaciones de teoría de grupos a la resolución de problemas. Sin embargo, hacia el final de la entrada también hablaremos un poco acerca de anillos, dominios enteros y campos.

Teoría de grupos básica

Una de las nociones de álgebra abstracta más básicas, y a la vez más flexibles, es la de grupo. La teoría de grupos es muy rica y se estudia a profundidad en un curso de álgebra abstracta o álgebra moderna. Aquí veremos únicamente un poco de esta teoría y algunas aplicaciones a resolución de problemas. Comenzamos con la definición.

Definición. Un grupo es un conjunto no vacío G con una operación binaria \cdot que cumple lo siguiente:

  • Asociatividad: Para cualesquiera elementos x,y,z en G tenemos que x\cdot (y\cdot z) = (x\cdot y) \cdot z.
  • Neutro: Existe un elemento e en G tal que x\cdot e = e = e\cdot x.
  • Inversos: Para cada elemento x en G, existe un elemento y en G tal que x\cdot y = e = y\cdot x.

Usualmente se simplifica la notación de la siguiente manera. Por un lado, en vez de poner el símbolo de producto, simplemente se ponen elementos consecutivos, por ejemplo a\cdot b = ab. Además, por la asociatividad, muchas veces no se ponen los paréntesis, de modo que expresiones como (a\cdot b)\cdot c se escriben simplemente como abc, a menos que los paréntesis ayuden a entender un argumento.

Hay que tener cuidado con invertir el orden de factores. En grupos, no necesariamente sucede que la operación es conmutativa, es decir, que ab=ba para todo par de elementos a y b. Si ab=ba decimos que a y b conmutan y si todo par de elementos de G conmutan, decimos que G es conmutativo. Un elemento siempre conmuta consigo mismo. Para n un entero positivo definimos a^n como el producto formado por n veces el elemento a.

A partir de la definición se puede ver que el neutro es único, pues si hubiera dos neutros e y e' tendríamos e=e\cdot e'=e', en donde primero usamos que e' es neutro y después que e lo es. Para a en G, definimos a^0 como e.

En grupos se vale «cancelar». Por ejemplo, si ab=ac, entonces podemos multiplicar esta igualdad a la izquierda por un inverso d de a y obtendríamos

    \[b=eb=dab=dac=ec=c.\]

Del mismo modo, la igualdad ba=ca implica b=c.

En particular, si d y d' son inversos de a, tenemos da=e=d'a, de donde d=d'. Esto muestra que los inversos también son únicos, así que al inverso de a le llamamos a^{-1}. Observa que e^{-1}=e. Nota que si a y b son elementos de G, entonces

    \[ab(b^{-1}a^{-1})=aea^{-1}=aa^{-1}=e,\]

de modo que el inverso de un producto ab es el producto b^{-1}a^{-1}. Para n un entero positivo, definimos a^{-n} como el inverso de a^n, que por lo anterior, es precisamente (a^{-1})^n. De hecho, ya definido a^n para todo entero, se puede verificar que se satisfacen las leyes usuales de los exponentes.

Problema. Sean a y b dos elementos en un grupo G con neutro e tales que aba=ba^2b, a^3=e y b^{2021}=e. Muestra que b=e.

Sugerencia pre-solución. Observa que si a y b conmutaran, entonces el resultado se deduce fácilmente de la primer igualdad. Así, intenta modificar el problema a demostrar que a y b conmutan. Para ello tienes que hacer un paso intermedio que necesita inducción.

Solución. Lo primero que veremos es que a y b^2 conmutan. Poniendo una identidad entre ambas b en el producto ab^2, tenemos que

    \[ab^2=abaa^{-1}b=ba^2ba^{-1}b.\]

De a^3=e, tenemos a^{-1}=a^2, así que siguiendo con la cadena de igualdades,

    \begin{align*}ba^2ba^{-1}b&=ba^2ba^2b\\&=ba^2aba\\&=bba=b^2a.\end{align*}

Así, ab^2=b^2a.

Ahora veremos que a y b conmutan. Para ello, como a y b^2 conmutan, tenemos que a y b^{2k} conmutan para cualquier entero k. Esto se puede probar por inducción. El caso k=1 es lo que ya probamos. Si es válido para cierta k, se sigue que

    \[ab^{2k+2}=b^{2k}ab^2=b^{2k+2}a.\]

Por hipótesis, b^{2020}=b, así que el resultado anterior nos dice que a y b conmutan.

Por esta razón, la primer hipótesis aba=ba^2b se puede reescribir como a^2b=a^2b^2, que por cancelación izquierda da e=b, como queríamos mostrar.

\square

Subgrupos y órdenes

Dentro de un grupo pueden vivir grupos más pequeños.

Definición. Un subgrupo de un grupo G es un subconjunto H de G que es un grupo con las operaciones de G restringidas a H.

Para que H sea subgrupo, basta con que no sea vacío y que sea cerrado bajo la operación de grupos y la operación «sacar inverso».

Por ejemplo, se puede ver que \matbb{Z}_{12}, los enteros módulo 12 con la suma, forman un grupo. De aquí, H_1=\{0,3,6,9\} es un subgrupo y H_2=\{0,4,8\} es otro.

Proposición. Si a es un elemento de un grupo G, entonces o bien

    \[1,a, a^2, a^3,\ldots\]

son todos elementos distintos de G, o bien existe un entero positivo n tal que a^n=1 y 1,a,\ldots,a^{n-1} son todos distintos. En este segundo caso, \{1,a,\ldots,a^{n-1}\} es un subgrupo de G.

Sugerencia pre-demostración. Divide en casos. Luego, usa el principio de cancelación o las leyes de exponentes para grupos.

Demostración. Si todos los elementos son distintos, entonces no hay nada que hacer. De otra forma, existen i<j tales que a^j=a^i, de donde por la ley de cancelación tenemos que a^{j-i}=e y j-i\geq 1. Así, el conjunto de enteros positivos m tales que a^m=e es no vacío, de modo que por el principio de buen orden tiene un mínimo, digamos n.

Afirmamos que

    \[1,a,a^2,\ldots,a^{n-1}\]

son todos distintos. En efecto, de no ser así, como en el argumento de arriba existirían 0\leq i < j \leq {n-1} tales que a^{j-i}=e, pero j-i\leq n-1 sería una contradicción a la elección de n como elemento mínimo.

Probemos ahora que A=\{1,a,\ldots,a^{n-1}\} es subgrupo de G. Si tenemos a^k y a^l en A, su producto es a^{k+l}. Por el algoritmo de la división, k+l=qn+r, con r\in \{0,\ldots,n-1\}, de modo que

    \[a^ka^l=a^{qn+r}=(a^n)^qa^r=e^qa^r=a^r,\]

así que A es cerrado bajo productos. Además, si 1\leq k\leq n-1, entonces 1\leq n-k \leq n-1 y a^ka^{n-k}=a^n=e. Así, A es cerrado bajo inversos. Esto muestra que A es subgrupo de G.

\square

En teoría de grupos, la palabra «orden» se usa de dos maneras. Por un lado si G es un grupo, su orden \text{ord}(G) es la cantidad de elementos que tiene. Por otro, dado un elemento a, el orden \text{ord}(a) de a es el menor entero positivo n tal que a^n=e, si es que existe.

Definimos al subgrupo generado por a como

    \[\langle a\rangle:=\{a^n:n\in \mathbb{Z}\}.\]

La proposición anterior dice que si \langle a \rangle es finito, entonces es un subgrupo de G de orden \text{ord}(\langle a \rangle) = \text{ord}(a). A los grupos de la forma \langle a \rangle se les llama cíclicos.

Teorema de Lagrange

Cuando estamos trabajando con grupos finitos, el orden de un subgrupo debe cumplir una condición de divisibilidad.

Teorema (de Lagrange). Sea G un grupo finito y H un subgrupo de G. Entonces \text{ord}(H) divide a \text{ord}(G).

No daremos la demostración de este teorema, pero veremos algunos corolarios que sirven en la resolución de problemas.

Proposición. Sea G un grupo finito.

  • Si \text{ord}(G) es un primo p, entonces G es cíclico.
  • El orden de cualquier elemento a de G divide al orden de G, y por lo tanto a^{\text{ord}(G)}=1.
  • Si a es un elemento de G de orden n y a^m=e, entonces n divide a m.

Demostración. Para la primer parte, si tomamos un elemento a de G que no sea e, ya vimos que \langle a \rangle es un subgrupo cíclico de G. Por el teorema de Lagrange, su orden debe dividir al primo p. Pero el orden de \langle a \rangle es al menos 2, así que el orden de \langle a \rangle debe ser p y por lo tanto \langle a \rangle=G.

Como vimos arriba, el orden de a es el orden de \langle a \rangle, que divide a G. Así,

    \begin{align*}a^{\text{ord}(G)}&=(a^{\text{ord}{a}})^{\text{ord}(G)/ \text{ord}(a)}\\&=e^{\text{ord}(G)/ \text{ord}(a)}\\&=e.\end{align*}

Con esto queda probado el segundo punto.

Para el último punto, usamos el algoritmo de la división para escribir m=qn+r, con r entre 0 y n-1. Tenemos que

    \[e=a^m=a^{qn+r}=a^r.\]

Por lo visto en la sección anterior, necesariamente r=0, así que n divide a m.

\square

Veamos cómo se pueden aplicar algunas de las ideas anteriores a un problema de teoría de grupos concreto.

Problema. En un grupo G, tenemos elementos a y b tales que a^7=1 y aba^{-1}=b^2. Determina qué posibles valores puede tener el orden de b.

Sugerencia pre-solución. Conjetura una fórmula para b^{2n} buscando un patrón. Establécela por inducción.

Solución. El orden de a debe dividir a 7, así que es o 1 o 7. Si es 1, entonces a=e, por lo que por la hipótesis tenemos b=b^2. De aquí b=e, así que el orden de b es 1. La otra opción es que el orden de a sea 7.

Afirmamos que para todo entero n se tiene que a^nba^{-n}=b^{2^n}. Esto se prueba inductivamente. Es cierto para n=1 por hipótesis. Si se cumple para cierta n y elevamos la igualdad al cuadrado, tenemos que

    \begin{align*}b^{2^{n+1}}&=(b^{2n})^2\\&=a^nba^{-n}a^nba^{-n}\\&=a^nb^2a^{-n}\\&=a^{n+1}ba^{-(n+1)},\end{align*}

lo cual termina la inducción.

En particular, para n=7 tenemos que a^7=a^{-7}=e, por lo que b=b^{2^7}, y por lo tanto b^{127}=e. Como 127 es primo, el orden de b puede ser 1 ó 127.

\square

En realidad, en el problema anterior falta mostrar que en efecto existe un grupo que satisfaga las hipótesis, y para el cual el orden de b sea exactamente 127. Esto no lo verificaremos aquí.

Teoría de grupos en teoría de números

Lo que hemos platicado de teoría de grupos se vale para grupos en general. Cuando aplicamos estos resultados a grupos particulares, tenemos nuevas técnicas para resolver problemas. Uno de los casos que aparecen más frecuentemente es aplicar teoría de grupos en problemas de teoría de números.

Si tomamos un entero n, los enteros entre 1 y n-1 que son primos relativos con n forman un grupo con la operación de producto módulo n. Si llamamos \varphi(n) a la cantidad de primos relativos con n entre 1 y n-1, el teorema de Lagrange da el siguiente corolario.

Teorema (de Euler). Para todo entero positivo n y a un entero primo relativo con n, se tiene que

    \[a^\varphi(n)\equiv 1\pmod n.\]

Como corolario al teorema de Euler, tenemos el pequeño teorema de Fermat, que hemos discutido previamente aquí en el blog.

Teorema (pequeño teorema de Fermat). Para p un primo y a un entero que no sea múltiplo de p, se tiene que

    \[a^{p-1}\equiv 1 \pmod p.\]

Así, cuando p es primo y a no es múltiplo de p, se tiene que el orden de a divide a p-1. Veamos un ejemplo en donde esta idea forma parte fundamental de la solución.

Problema. Muestra que para ningún entero n>1 se tiene que n divide a 2^n-1.

Sugerencia pre-solución. Procede por contradicción, suponiendo que sí existe. Considera un primo p que divida a n y que además sea extremo en algún sentido. Trabaja módulo p.

Solución. Supongamos que existe un entero n>1 tal que n divide a 2^n-1. Sea p el primo más pequeño que divide a n. Tomemos a el orden de 2 en el grupo multiplicativo \mathbb{Z}_p.

Por un lado, como p divide a n y n divide a 2^n-1, se tiene que p divide a 2^n-1 y por lo tanto

    \[2^n\equiv 1 \pmod p.\]

De esta forma, a divide a n.

Por otro lado, por el pequeño teorema de Fermat, tenemos que

    \[2^{p-1}\equiv 1 \pmod p,\]

así que a divide a p-1 y por lo tanto a\leq p-1.

Si a\neq 1, entonces a tiene un divisor primo que divide a n y es menor que a\leq p-1, lo cual es imposible pues elegimos a p como el menor divisor primo de n. De esta forma, a=1. Pero esto da la contradicción 2\equiv 1 \pmod p.

\square

Anillos, dominios enteros y campos

Cuando se están resolviendo problemas, es importante tener en mente que existen otras estructuras algebraicas. Definiremos sólo las más comunes y veremos un problema ejemplo.

Definición. Un anillo es un conjunto R con dos operaciones binarias suma y producto tales que:

  • R con la suma es un grupo conmutativo.
  • El producto en R es asociativo, es decir (ab)c=a(bc) para a,b,c en R.
  • Se cumple la ley distributiva, es decir a(b+c)=ab+ac y (b+c)a=ba+ca para a,b,c en R.

El producto en R no tiene por qué ser un grupo. De hecho, ni siquiera tiene que tener neutro.

Definición. Si un anillo R tiene neutro, decimos que R es un anillo con 1. Si la multiplicación de R es conmutativa, decimos que R es conmutativo.

Definición. Un dominio entero es un anillo conmutativo con uno en donde además se vale cancelar, es decir, ab=ac implica b=c y ba=ca implica b=c.

Definición. Un campo es un anillo conmutativo con uno en donde cada elemento tiene inverso multiplicativo. En otras palabras, es un anillo en donde la suma y el producto son grupos.

Problema. Muestra que todo dominio entero finito es un campo.

Sugerencia pre-solución. Usa el principio de las casillas.

Solución. Supongamos que R=\{a_1,\ldots,a_n\} es un dominio entero con una cantidad finita de elementos. Lo único que falta para que sea campo es que los elementos tengan inversos multiplicativos.

Sea a un elemento de R y supongamos que a no tiene inverso multiplicativo. Entonces, los números

    \[a_1a, a_2a,\ldots,a_n a\]

sólo pueden tomar a lo más n-1 valores diferentes, de modo que por principio de las casillas existen dos de ellos que son iguales, digamos a_ia=a_ja para i\neq j.

Como R es dominio entero, se vale cancelar, lo cual muestra a_i=a_j. Esto es una contradicción, pues a_i y a_j eran elementos distintos de R. Así, todo elemento tiene inverso multiplicativo.

\square

En cursos de matemáticas a nivel superior se ven muchos ejemplos de estas estructuras algebraicas. En cursos de Álgebra Superior se construye el dominio entero de enteros \mathbb{Z}. Se construyen los campos \mathbb{R}, \mathbb{Q} y \mathbb{C}. También, se construyen los anillos de polinomios \mathbb{F}[x]. La noción de campo es fundamental cuando se construye la teoría de Álgebra Lineal. Como se puede ver, la teoría de álgebra es muy amplia, así que esta entrada sólo queda como invitación al tema.

Más problemas

Puedes encontrar más problemas de estructuras algebraicas en la Sección 4.4 del libro Problem Solving through Problems de Loren Larson.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.