Archivo del Autor: Blanca Radillo

Álgebra Lineal I: Problemas de cambio de base

En las entradas anteriores platicamos acerca de matrices de cambio de base. Vimos cómo nos ayudan a pasar un vector expresado en una base a otra. También vimos cómo nos ayudan a entender una transformación lineal en bases distintas. En esta entrada, veremos algunos ejemplos para repasar estos conceptos.

Problema 1. Considera las familias de vectores B=\{v_1,v_2,v_3\}, B'=\{w_1,w_2,w_3\}, donde

    \[v_1=(0,1,1), \ v_2=(1,0,1), \ v_3=(1,1,0)\]

y

    \[w_1=(1,1,-1), \ w_2=(1,0,-1), \ w_3=(-1,-1,0).\]

  1. Prueba que B y B' son bases de \mathbb{R}^3.
  2. Encuentra la matriz de cambio de base P de B a B' usando la definición de P.
  3. Encuentra la matriz de cambio de base P usando la base canónica de \mathbb{R}^3 y la última proposición de esta entrada.

Solución. (1) Dado que \dim \mathbb{R}^3=3 y estas familias son de tres vectores, basta con demostrar que son vectores linealmente independientes. Una manera de hacerlo es formando la matriz obtenida al colocar a los vectores como renglones y reducirla hasta la matriz identidad I_3.

Para B, la matriz asociada es

    \[\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.\]

Haciendo los cálculos de la reducción, obtenemos que

    \[\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}\]


    \[\longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\]


Esto implica que los vectores en B son linealmente independientes y, por lo tanto, forman una base \mathbb{R}^3.

Para B', la matriz asociada es

    \[\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.\]

Reduciendo la matriz, tenemos que

    \[\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\]


Por lo tanto, B' también es una base de \mathbb{R}^3.

(2) Recordemos que la matriz de cambio de base P está definida como la matriz [p_{ij}] cuya columna j tiene como entradas a las coordenadas de w_j escrito en términos de la base B. Entonces, expresemos

(1,1,-1)=w_1=av_1+bv_2+cv_3=(b+c,a+c,a+b),

(1,0,-1)=w_2=dv_1+ev_2+fv_3=(e+f,d+f,d+e),

(-1,-1,0)=w_3=gv_1+hv_2+kv_3=(h+k,g+k,g+h),

obteniendo que

    \begin{align*}b+c&=1\\a+c&=1\\a+b&=-1\\e+f&=1\\d+f&=0\\d+e&=-1\\h+k&=-1\\g+k&=-1\\g+h&=0.\end{align*}

Si resolvemos el sistema anterior, concluimos que a=b=-\frac{1}{2}, c=\frac{3}{2}, d=-1, e=0, f=1, g=h=0, k=-1. Por lo tanto

P=\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & k  \end{pmatrix}= \begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1  \end{pmatrix}.

(3) Sea B''=\{e_1,e_2,e_3\} la base canónica de \mathbb{R}^3. Queremos encontrar la matriz de cambio de base denotada como \text{Mat}_B (B'). Usando la última proposición de la clase del lunes, tenemos que

\text{Mat}_B (B')=\text{Mat}_{B} (B'') \cdot \text{Mat}_{B''} (B')=(\text{Mat}_{B''} (B))^{-1} \cdot \text{Mat}_{B''} (B').

Por definición,

\text{Mat}_{B''} (B)=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \  \text{Mat}_{B''} (B')=\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.

Para calcular (\text{Mat}_{B''} (B))^{-1}, lo haremos como ya lo hemos visto en clases: pegando a la derecha una matriz identidad y aplicando reducción gaussiana:

    \begin{align*} &\left( \begin{array}{ccc|ccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 1 & 1 & -1 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & -1/2 & 1/2 & 1/2 \\ 0 & 1 & 0 & 1/2 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & 1/2 & -1/2 \end{array} \right). \end{align*}

Por lo tanto,

    \[(\text{Mat}_{B''}(B))^{-1}=\begin{pmatrix} -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix}.\]

Finalmente, usando la proposición, tenemos que

P=\text{Mat}_B (B')=\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}\cdot\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}

=\begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1 \end{pmatrix}.

Esto coincide con el cálculo que hicimos previamente.

\square

Problema 2. Considera la matriz

A=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}

y sea T:\mathbb{R}^3 \rightarrow \mathbb{R}^3 la transformación lineal asociada, es decir T(X)=AX para todo X\in\mathbb{R}^3. Considera los vectores

v_1=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ v_2=\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ v_3=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.

  1. Prueba que v_1,v_2,v_3 forman una base de \mathbb{R}^3 y calcula la matriz de T con respecto a esta base.
  2. Encuentra la matriz de cambio de base de la base canónica a la base \{v_1,v_2,v_3\}.
  3. Calcula A^n para todo entero positivo n.

Antes de ver la solución a este problema este problema, observa que sería muy difícil decir quién es A^{100} «a mano» si procedes directamente. Se tendrían que hacer muchas multiplicaciones matriciales, que son difíciles. Ten en mente esto cuando leas la solución de la parte 3.

Solución. (1) Dado que la dimensión de \mathbb{R}^3 es 3 y \{v_1,v_2,v_3\} son tres vectores, basta con demostrar que éstos son linealmente independientes para probar que forman una base. Sean a,b,c\in\mathbb{R} tales que av_1+bv_2+cv_3=0, entonces

a+b+c=0, \ a-c=0, \ -a-b=0

\Rightarrow a=c, -a=b, a-a+a=0 \Rightarrow a=0, c=0, b=0.

Entonces, son linealmente independientes y, por lo tanto, forman una base de \mathbb{R}^3.

Nota: Otra manera de demostrarlo es considerar la matriz formada por los vectores v_1,v_2,v_3 como sus columnas, reducirla y llegar a que la matriz reducida es la matriz identidad.

Ahora, para calcular la matriz de T con respecto a la nueva base, expresaremos T(v_1),T(v_2), T(v_3) en términos de v_1,v_2,v_3. Entonces tenemos que

T(v_1)=Av_1=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=v_1,

T(v_2)=Av_2=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}=\begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}=2v_2,

T(v_3)=Av_3=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=\begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}=3v_3.

Por lo tanto, la matriz que buscamos es

    \[B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.\]

(2) Lo haremos de la misma manera que en el inciso (2) del problema anterior, que consiste en escribir a los v_1,v_2,v_3 en la base canónica, pero ésto es obvio ya que están escritos de esa manera, por lo tanto

    \[P=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0  \end{pmatrix}.\]

(3) Sabemos que la matriz de T con respecto a v_1,v_2,v_3 (que nombramos en el inciso (1) como B) es igual a P^{-1}AP, gracias al último corolario de la sección «Matrices de cambio de base y transformaciones lineales» de la entrada anterior. Entonces

    \[P^{-1}AP=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.\]

Es fácil ver (pero lo pueden demostrar por inducción en n) que

    \[(P^{-1}AP)^n=(P^{-1}AP)(P^{-1}AP)\dots (P^{-1}AP)=P^{-1}A^n P.\]

Esto implica que P^{-1}A^n P=B^n, es decir

    \[P^{-1}A^n P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.\]

Multiplicando por P a la izquierda y por P^{-1} a la derecha, obtenemos que

    \[A^n=P\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}P^{-1} .\]

Para ello, nos falta calcular la inversa de P, y eso lo haremos como siempre lo hemos hecho: reduciendo la matriz. Entonces

    \begin{align*} &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right). \end{align*}

Como consecuencia, tenemos que

    \[P^{-1}=\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}.\]

Por lo tanto,

    \begin{align*}A^n &=P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} P^{-1}\\&=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}\end{align*}

A^n= \begin{pmatrix} 1-2^n+3^n & 1-2^n & 1-2^{n+1}+3^n \\ 1-3^n & 1 & 1-3^n \\ 2^n-1 & 2^n-1 & 2^{n+1}-1 \end{pmatrix}.

\square

El ejercicio anterior deja una moraleja importante de álgebra lineal: si tenemos una matriz A y logramos encontrar una matriz diagonal B similar a ella, entonces será fácil encontrar A^n. Para finalizar esta sesión, tenemos el siguiente problema.

Problema 3. Prueba que las matrices

    \[A=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ \text{y} \ B=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

son similares.

Solución. Para resolverlo usaremos el corolario visto en la clase de ayer, que dice (adaptándolo al problema):

Corolario. Sea T:\mathbb{R}^4\rightarrow \mathbb{R}^4 una transformación lineal. Sean B' y B'' bases de \mathbb{R}^4 y P la matriz de cambio de base de B' a B''. Entonces \text{Mat}_{B''}(T)=P^{-1} \text{Mat}_{B'}(T) P.

Si podemos encontrar una transformación T y bases B' y B'' tales que \text{Mat}_{B'}(T)=A y \text{Mat}_{B''} (T)=B, podemos calcular la matriz de cambio de base P, y satisface que B=P^{-1}AP, implicando que A y B sean matrices similares. Entonces, el problema se reduce a encontrar la transformación, las bases y calcular P.

Dado que \text{Mat}_{B'}(T)=A, si B' es la base canónica, es claro que la transformación T satisface que T(X)=AX para todo X\in\mathbb{R}^4.

Ahora, encontremos B''. Sea B''=\{ v_1,v_2,v_3,v_4 \} con

v_1=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}, v_2=\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}, v_3=\begin{pmatrix} x_3 \\ y_3 \\ z_3 \\ w_3 \end{pmatrix}, v_4=\begin{pmatrix} x_4 \\ y_4 \\ z_4 \\ w_4 \end{pmatrix}.

Dado que \text{Mat}_{B''}(T)=B, entonces satisface

T(v_1)=Av_1=v_1, \ T(v_2)=Av_2=2v_1+v_2,

T(v_3)=Av_3=3v_1+2v_2+v_3, \ T(v_4)=Av_4=4v_1+3v_2+2v_3+v_4.

Resolviendo lo anterior, obtenemos que

Av_1=\begin{pmatrix} x_1+y_1 \\ y_1+z_1 \\ z_1+w_1 \\ w_1 \end{pmatrix}=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix} \ \Rightarrow \ v_1=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix},

Av_2=\begin{pmatrix} x_2+y_2 \\ y_2+z_2 \\ z_2+w_2 \\ w_2 \end{pmatrix}=\begin{pmatrix} x_2+2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix} \ \Rightarrow \ v_2=\begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix},

Av_3=\begin{pmatrix} x_3+y_3 \\ y_3+z_3 \\ z_3+w_3 \\ w_3 \end{pmatrix}=\begin{pmatrix} x_3+5 \\ y_3+4 \\ z_3 \\ w_3 \end{pmatrix} \ \Rightarrow \ v_3=\begin{pmatrix} 1 \\ 5 \\ 4 \\ 0 \end{pmatrix},

y por último

Av_4=\begin{pmatrix} x_4+y_4 \\ y_4+z_4 \\ z_4+w_4 \\ w_4 \end{pmatrix}=\begin{pmatrix} x_4+9 \\ y_4+16 \\ z_4+8 \\ w_4 \end{pmatrix} \ \Rightarrow \ v_4=\begin{pmatrix} 1 \\ 9 \\ 16 \\ 8 \end{pmatrix}

Aquí estamos usando que los sistemas de ecuaciones que se obtienen tienen como variables libres a x_1,x_2,x_3,x_4, las cuales las estamos tomando todas ellas iguales a 1.

Estos vectores son linealmente independientes pues la matriz con ellos como columnas es triangular superior con entradas en la diagonal distintas de cero, de modo que su matriz reducida es la identidad. Como \mathbb{R}^4 es de dimensión 4 y B'' es un conjunto de cuatro vectores linealmente independientes, entonces B'' es una base. Más aún, B'' es una base tal que \text{Mat}_{B''} (T)=B, por construcción.

Finalmente, podemos calcular la matriz de cambio de base P de B' a B'', pero es fácil ya que B' es la base canónica, entonces

    \[P=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}.\]

Por propiedades de la matriz de cambio de base, sabemos que P es invertible. Entonces, para terminar la prueba, podemos encontrar P^{-1} y verificar que B=P^{-1}AP, o simplemente verificamos que PB=AP, y por lo tanto A y B son matrices similares. Lo haremos de la segunda manera. En efecto,

PB=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}

AP=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}.

Por lo tanto, A y B son matrices similares.

Nota: si calculas la inversa de P, obtienes como resultado que

    \[P^{-1}=\begin{pmatrix} 1 & -\frac{1}{2} & \frac{3}{8} & -\frac{5}{16} \\ 0 & \frac{1}{2} & -\frac{5}{8} & \frac{11}{16} \\ 0 & 0 & \frac{1}{4} & -\frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{8} \end{pmatrix}.\]

\square


Álgebra Lineal I: Proyecciones, simetrías y subespacios estables


En la clase pasada subida a este blog, se introdujo el concepto de transformaciones lineales entre dos espacios vectoriales, diversas propiedades que satisfacen, y al final, se presentaron las definiciones del kernel y la imagen de una transformación lineal.

Proyecciones

Ahora, veremos una clase fundamental de transformaciones lineales: las proyecciones sobre subespacios.

Definición. Sea V un espacio vectorial sobre el campo F, y sean W_1 y W_2 dos subespacios de V tales que V=W_1\oplus W_2. La proyección sobre W_1 es el mapeo \pi_1:V\rightarrow W_1 definido como: para cada v\in V, \pi_1(v) es el único vector en W_1 tal que v-\pi_1(v) está en W_2.

De manera similar podemos definir la proyección sobre W_2, llamado \pi_2:V\rightarrow W_2. Dado que V=W_1\oplus W_2, para todo v\in V existen únicos vectores v_1\in W_1 y v_2\in W_2 tales que v=v_1+v_2. Entonces \pi_1(v)=v_1 y \pi_2(v)=v_2.

Ejemplo. Sea V=\mathbb{R}^2, y sean W_1={(a,0): a\in\mathbb{R}} y W_2={(0,b):b\in\mathbb{R}}. Sabemos que W_1 y W_2 son subespacios vectoriales y que V=W_1\oplus W_2. Entonces, si (a,b)\in V, \pi_1((a,b))=(a,0) y \pi_2((a,b))=(0,b).

Al inicio dijimos que las proyecciones eran una clase fundamental de las transformaciones lineales, pero no hemos demostrado que las proyecciones son transformaciones lineales.

Proposición. Sea \pi una proyección de V sobre W_1. Entonces \pi es una transformación lineal.

Demostración. Sean v,v' \in V. Sean w=\pi(v) y w'=\pi(v'), ambos en W_1 por definición, también v-w,v'-w' \in W_2. Como W_1, W_2 son subespacios vectoriales, w+w'\in W_1 y

    \[(v+v')-(w+w')=(v-w)+(v'-w')\in W_2.\]

Por lo tanto, \pi(v+v')=w+w'=\pi(v)+\pi(v').

Ahora sea c\in F. Notemos que cw=c\pi(v). También dado que v=w+(v-w), entonces cv=cw+c(v-w). Por propiedades de subespacios vectoriales, cw\in W_1 y c(v-w)\in W_2, eso implica que \pi(cv)=cw. Entonces, \pi(cv)=cw=c\pi(v). Por lo tanto, las proyecciones son transformaciones lineales.

\square

Además notemos que \pi(v)=v para todo v\in W_1 pero \pi(v)=0 si v\in W_2.

Simetrías

Una segunda clase importante de mapeos lineales son las llamadas simetrías.

Definición. Sea una descomposición V=W_1\oplus W_2, con W_1, W_2 dos subespacios de V. Decimos que s:V\rightarrow V es una simetría con respecto a W_1 a lo largo de W_2 si para todo v\in V, escrito como v=v_1+v_2 con v_1\in W_1 y v_2 \in W_2, tenemos que

    \[s(v)=v_1-v_2.\]

Al igual que con las proyecciones, no es dificil ver que las simetrías son transformaciones lineales.

Proposición. Sea s:V\rightarrow V una simetría con respecto a W_1 a lo largo de W_2. Entonces, s es una transformación lineal.

Demostración. Sean v,v' \in V. Sean v_1,v'_1\in W_1 y v_2,v'_2 \in W_2 tales que v=v_1+v_2 y v'=v'_1+v'_2. Eso implica que v+v'=(v_1+v'_1)+(v_2+v'_2) con v_1+v'_1 \in W_1 y v_2+v'_2 \in W_2. Entonces

    \[s(v)+s(v')=(v_1-v_2)+(v'_1-v'_2) =(v_1+v'_1)-(v_2+v'_2)= s(v+v').\]


Ahora sea a\in F, entonces as(v)=a(v_1-v_2)=av_1-av_2=s(av_1+av_2)=s(av). Por lo tanto, s es una transformación lineal.

\square

Notemos que si v\in W_1, entonces s(v)=v-0=v, y si v\in W_2, entonces s(v)=0-v=-v.

Subespacios estables

Observamos que las proyecciones y las simetrías satisfacen que \pi(W_1)=W_1 y s(W_1)=W_1. Esta es una propiedad muy linda, pero en general, si T:V\rightarrow V una transformación lineal cualquiera y W un subespacio de V, no siempre tenemos que T(W)=W, o ni siquiera que T(W)\subset W. Sin embargo, los subespacios W que sí satisfacen esta útlima propiedad son cruciales en el estudio de este curso, y por ello, merecen un nombre especial.

Definición. Sea T:V\rightarrow V una transformación lineal. Si W es un subespacio de V tal que T(W)\subset W, decimos que W es un subespacio estable bajo T.

En otras palabras, W es estable bajo T si para todo v en W se tiene que T(W) también está en W. Un ejemplo trivial es la transformación identidad con cualquier subespacio W. Otro ejemplo trivial es que V y \{0\} son dos subespacios estables bajo cualquier transformación lineal T:V\rightarrow V. Otros ejemplos son los ya mencionados: las proyecciones y las simetrías.

Ejemplo. Consideremos el mapeo T:\mathbb{R}^2\rightarrow \mathbb{R}^2 con T(x,y)=(y,-x). Claramente T es lineal. Sea W un subespacio estable de \mathbb{R}^2 bajo T. Supongamos que W\neq \mathbb{R}^2,\{ (0,0) \}. Entonces dim(W) es exactamente 1. Eso implica que W=span(v) para algún v\in\mathbb{R}^2, es decir, si w\in W lo podemos escribir como w=av donde a es un escalar. En particular v\in W.

Como W es estable bajo T, entonces T(v)\in W, esto es T(v)=cv para algún c. Si v=(x,y), entonces T(v)=T((x,y))=(y,-x)=cv=c(x,y)=(cx,cy), implica que y=cx y -x=cy, esto sólo es posible si (c^2+1)x=0, y como c es real, esto implica x=0 y y=0. Por lo tanto, W={(0,0)}. Contradicción. Esto demuestra que los únicos subespacios estables bajo T son \mathbb{R}^2 y \{(0,0)\}.

\square

Proposición. Sea T:V\rightarrow V una transformación lineal tal que, para todo v\in V, span(v) es un subespacio estable bajo T. Entonces existe un escalar c\in F tal que T(x)=cx para todo x\in V.

Demostración. Sea x\in V. Si L=span(x), T(L)\subset L por hipótesis, en particular T(x)\in L, existe c_x tal que T(x)=c_x x. Queremos probar que esa constante realmente no depende de x.

Sea y\in V, entonces x,y son linealmente independientes o no. Suponemos que x,y son linealmente independientes. Entonces x+y \neq 0 y la igualdad T(x+y)=T(x)+T(y) puede ser escrita como c_{x+y} (x+y)=c_x x+c_y y, esto es equivalente a (c_{x+y}-c_x)x+(c_{x+y}-c_y) y=0. Por independencia lineal, c_{x+y}=c_x=c_y.

Ahora si x,y no son linealmente independientes, entonces y=ax para algún escalar a no cero. Entonces la igualdad T(y)=T(ax)=aT(x) puede ser escrita como c_y y=ac_x x=c_x y, esto implica que c_y=c_x. Entonces para todo y\in V, c_x=c_y. Definimos c=c_x, cuya constante satisface la proposición.

\square

Las imágenes y kernels son estables

Proposición. Sea T:V\to V una transformación lineal. Entonces \ker(T) e \Ima(T) son subespacios estables bajo T.

Demostración. En la entrada anterior ya vimos que \ker(T) e \Ima(T) son subespacios de V. Veamos que son estables.

Tomemos v\in \ker(T). Tenemos que mostrar que T(v)\in \ker(T). Pero esto es cierto pues

    \[T(T(v))=T(0)=0.\]

Así T(\ker(T))\subset \ker(T) y por lo tanto \ker(T) es estable bajo T.

Ahora tomemos v\in \Ima(T). De manera inmediata, T(v)\in \Ima(T). Así, \Ima(T) es estable bajo T.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Argumenta por qué la transformación \pi:\mathbb{R^3}\to \mathbb{R} dada por \pi(x,y,z)=y es una proyección.
  • ¿Es la transformación T:\mathbb{R}^3 \to \mathbb{R} dada por T(x,y,z)=x+y+z una proyección?
  • Sea B=\{v_1,v_2,\ldots,v_n\} una base para un espacio vectorial V sobre un campo F. Sea V_i el espacio vectorial generado por v_i, es decir, el conjunto de vectores de la forma cv_i con c\in F. Como B es base, cada vector v\in V puede escribirse de la forma

        \[a_1v_1+a_2v_2+\ldots+a_nv_n\]

    de manera única. Muestra que para toda i\in\{1,2,\ldots,n\} la función \pi_i(v)=a_i es una proyección.

Puedes dejar dudas de la entrada o soluciones a algunos de esta tarea moral en los comentarios y les echaremos un ojo.

Otras entradas de Álgebra Lineal