Álgebra Superior II: Raíces en los complejos

Introducción

En esta entrada veremos cómo resolver en \mathbb{C} la ecuación w^n=z, en donde z es un complejo y n es un entero positivo. Puedes pensar esto como que aprenderemos a obtener raíces en los complejos, pero sólo para n entero. Más adelante hablaremos de la función exponencial compleja, que nos permitirá elevar a otro tipo de exponentes.

Nuestra herramienta principal será la fórmula de De Moivre, que demostramos en una entrada anterior. Encontrar raíces n-ésimas es una herramienta más en nuestra caja para trabajar con números complejos, que hasta el momento ya incluye resolver ecuaciones cuadráticas complejas y sistemas de ecuaciones lineales complejos.

Introducción a raíces en los complejos

Pensemos en un ejemplo sencillo. ¿Cuáles son los complejos w tales que w^4=1? En \mathbb{R} tenemos dos de ellos: 1 y -1. Como

    \[(-i)^4=i^4=(-1)^2=1,\]

en \mathbb{C} tenemos otras dos soluciones: i y -i. Así, hasta ahora tenemos 4 soluciones en \mathbb{C}: 1, -1, i y -i.

Para mostrar que son las únicas en este sencillo caso, podemos hacer lo siguiente. Expresamos 1 en forma polar 1=\cis(0). Expresamos en forma polar una solución w=s\cis(\alpha), con \theta en [0,2\pi). Por el teorema de De Moivre, tenemos que

    \[1=w^4=s^4\cis(4\alpha).\]

Así, la norma s de w debe satisfacer s^4=1, y además \cis(4\alpha) debe ser 1, por lo que 4\alpha debe ser un múltiplo entero de 2\pi. La norma es un real positivo, así que la única solución para s es 1. Ahora, ¿cuántos argumentos \alpha en [0,2\pi) hacen que 4\alpha sea un múltiplo entero de 2\pi?

Para determinar eso, notemos que 4\alpha está en [0,8\pi), y ahí hay exactamente cuatro múltiplos enteros de 2\pi, que son

    \[0,2\pi, 4\pi, 6\pi.\]

Esto es justo lo que limita las soluciones a que sean a lo más 4.

Podemos continuar para verificar que en efecto son las soluciones que ya encontramos. Las soluciones para \alpha en cada caso son

    \[0,\frac{\pi}{2},\pi,\frac{3\pi}{2}.\]

Concluimos entonces que las soluciones complejas a w^4=1 son, en forma polar,

    \begin{align*}w_1&=\cis(0)\\w_2&=\cis\left(\frac{\pi}{2}\right)\\w_3&=\cis\left(\pi\right)\\w_4&=\cis\left(\frac{3\pi}{2}\right),\end{align*}

que son exactamente 1,i,-1,-i.

El teorema de raíces en los complejos

La discusión anterior funciona en general, para cualquier entero positivo n y para cualquier complejo \mathbb{C}. Siempre tenemos exactamente n soluciones, y sabemos cómo se ven en forma polar.

Teorema. Sea z=r\cis(\theta) un número complejo no cero dado en forma polar y n un entero positivo. Existen exactamente n elementos distintos de \mathbb{C} tales que w^n = z. Están dados en forma polar por

    \[w_j=r^{1/n} \cis\left(\frac{\theta}{n} + j\frac{2\pi}{n}\right)\]

para j=0,1,2\ldots,n-1.

Demostración. Tomemos una solución w y la escribimos en forma polar w=s\cis(\alpha), con \alpha en [0,2\pi). Usando que w es solución y la fórmula de De Moivre, obtenemos que

    \[r\cis(\theta)=s^n\cis(n\alpha).\]

Como s tiene que ser real positivo, obtenemos que s=r^{1/n} (aquí estamos usando la raíz n-ésima en los reales).

El ángulo n\alpha está en el intervalo [0,2n\pi), y debe diferir en un múltiplo entero de 2\pi del ángulo \theta. Como \theta está en [0,2\pi), las únicas posibilidades para n\alpha pueden ser los n valores

    \[\theta, \theta+2\pi,\ldots, \theta+2(n-1)\pi,\]

de donde las soluciones para \alpha son

    \[\frac{\theta}{n},\frac{\theta}{n}+\frac{2\pi}{n}, \ldots, \frac{\theta}{n} + (n-1)\frac{2\pi}{n},\]

respectivamente. Como son ángulos distintos en [0,2\pi), obtenemos las posibles soluciones distintas

    \[r^{1/n} \cis\left(\frac{\theta}{n} + j\frac{2\pi}{n}\right)\quad \text{para $j=0,\ldots,n-1$}.\]

Verificar que en efecto son soluciones es sencillo, ya sea revirtiendo los pasos que hicimos, o usando directamente la fórmula de De Moivre. Esta verificación queda como tarea moral.

\square

Observa que el teorema dice que para obtener una raíz podemos empezar del complejo de norma r^{1/n} y argumento \frac{\theta}{n}, y de ahí obtener el resto de las raíces en los complejos «rotando repetidamente \frac{2\pi}{n} en el plano complejo». Esto muestra que las raíces forman los vértices de un n-ágono regular.

Nos costó un poco de trabajo mostrar que teníamos a lo más n soluciones. En realidad, cualquier ecuación polinomial de grado n, es decir, de la forma

    \[a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0\]

tiene a lo más n soluciones. Esto lo veremos en toda su generalidad en la última unidad, cuando hablemos de polinomios.

Ejemplos de obtener raíces en los complejos

Ejemplo. Encontremos todas las raíces séptimas del complejo 128\cis\left(\frac{14\pi}{13}\right). Para empezar, notamos que 128^{1/7}=2, de modo que todas las raíces tienen norma 2.

Una de las raíces tiene argumento \frac{14\pi}{7\cdot 13}=\frac{2\pi}{13}, y el argumento del resto difiere en múltiplos enteros de \frac{2\pi}{7}. De esta forma, las raíces son

    \begin{align*}w_1&=2\cis\left(\frac{2\pi}{13}\right)\\w_2&=2\cis\left(\frac{2\pi}{13}+\frac{2\pi}{7}\right)=2\cis\left(\frac{40\pi}{91}\right)\\w_3&=2\cis\left(\frac{2\pi}{13}+\frac{4\pi}{7}\right)=2\cis\left(\frac{66\pi}{91}\right)\\w_4&=2\cis\left(\frac{2\pi}{13}+\frac{6\pi}{7})\right=2\cis\left(\frac{92\pi}{91}\right)\\w_5&=2\cis\left(\frac{2\pi}{13}+\frac{8\pi}{7}\right)=2\cis\left(\frac{118\pi}{91}\right)\\w_6&=2\cis\left(\frac{2\pi}{13}+\frac{10\pi}{7}\right)=2\cis\left(\frac{144\pi}{91}\right)\\w_7&=2\cis\left(\frac{2\pi}{13}+\frac{12\pi}{7}\right)=2\cis\left(\frac{170\pi}{91}\right).\end{align*}

\square

Problema. Sabemos que (2-3i)^4=-119+120i. Encuentra las otras raíces cuartas de -119+120i.

Solución. Podríamos pasar -119+120i a forma polar y usar el método anterior. Esto funciona y dará una solución. Pero veamos una solución alternativa más corta, que nos ayuda a entender mejor el teorema de raíces en los complejos.

De acuerdo con lo que probamos, las raíces varían únicamente en argumento, al que se le va sumando \frac{\pi}{2}. Es decir, si tenemos una raíz en el plano complejo, las demás se obtienen de ir rotando \frac{\pi}{2} (recuerda que esto es 90^\circ) desde el origen. Al ir rotando el punto (2,-3) en el plano complejo en este ángulo, obtenemos los puntos (-3,-2), (-2,3) y (3,2), de modo que las otras tres raíces son -3-2i, -2+3i y 3+2i.

Otra forma más de pensarlo es la siguiente. Si ya tenemos una raíz cuarta w de un complejo z, entonces todas las raíces se obtienen multplicando por 1,i,-1, -i. En efecto, por ejemplo,

    \[(iw)^4=i^4w^4=w^4=1.\]

Así, para el problema que nos interesa, las soluciones son

    \begin{align*}w_1&=2-3i\\w_2&=i(2-3i)=3+2i\\w_3&=-(2-3i)=-2+3i\\w_4&=-i(2-3i)=-3-2i,\end{align*}


lo cual coincide con lo que habíamos encontrado antes.

\square

Raíces n-ésimas de la unidad

Un caso particular importante de la teoría desarrollada en la sección anterior es cuando z es 1. Sea n un entero positivo. A un complejo w tal que w^n=1 se le conoce como una raíz n-ésima de la unidad.

Teorema (de las raíces n-ésimas de la unidad). Sea n un entero positivo. Existen exactamente n raíces n-ésimas de la unidad distintas. Si \omega es la que tiene el menor argumento positivo, entonces dichas raíces son

    \[1,\omega, \omega^2,\ldots, \omega^{n-1}.\]

La demostración se sigue fácilmente del teorema de raíces n-ésimas, y queda como tarea moral. Cualquier raíz n-ésima \omega tal que sus primeras potencias generen todas las raíces n-ésimas de la unidad se le conoce como una raíz primitiva.

Las raíces n-ésimas de la unidad tienen una interpretación geométrica bonita. Forman los vértices del n-ágono regular con n vértices, sobre la circunferencia unitaria, y donde uno de los vértices es 1.

Ejemplo. Obtengamos las raíces quintas de la unidad. Primero, obtengamos la de menor argumento positivo, que por el teorema de raíces en los complejos, es

    \[\omega = \cis\left(\frac{2\pi}{5}\right).\]

El resto de las raíces son entonces \omega^2, \omega^3, \omega^4 y 1. Las podemos encontrar en el plano complejo como vértices del siguiente pentágono regular:

Ejemplo de raíces en los complejos: raíces quintas de la unidad
Raíces quintas de la unidad

Cualquiera de \omega, \omega^2, \omega^3 y \omega^4 son raíces primitivas, pero 1 no es raíz primitiva pues sus potentcias sólo son él mismo.

\square

Las raíces n-ésimas de la unidad se utilizan en muchos contextos. Aunque se puede trabajar con ellas de forma explícita, muchas veces se utilizan sólo las propiedades algebraicas que cumplen. A continuación enunciamos algunas.

Teorema. Sea \omega una raíz primitva n-ésima de la unidad. Las raíces n-ésimas de la unidad

    \[\omega_i = \omega^i\]

para i=0,\ldots,n-1 satisfacen las siguientes propiedades:

  • Para n>1, se tiene que \omega_0+\ldots+\omega_{n-1}=0.
  • Para k=0,1,\ldots,n-1, se tiene que

        \[(\omega_k)^{-1}=\overline{\omega_k}=\omega_{n-k}.\]

  • Se tiene que \omega_0\cdot\ldots\cdot \omega_{n-1} = (-1)^{n+1}.

Demostración. Empezamos con el primer inciso. Si n>1, tenemos que 1 no es raíz primitiva, así que para el primer inciso sabemos que \omega\neq 1. Usamos la fórmula para suma de términos en una progresión geométrica:

    \begin{align*}\omega_0+\omega_1&+\ldots+\omega_{n-1}\\&= 1+\omega+\ldots+\omega^{n-1}\\&=\frac{1-\omega^n}{1-\omega}\\&=\frac{1-1}{1-\omega}\\&=0.\end{align*}

Para la segunda parte, notemos que

    \[\omega_k\omega_{n-k}=\omega^k\omega^{n-k}=\omega^n=1,\]

lo cual prueba una de las igualdades. La otra igualdad se sigue del hecho general que el inverso de un complejo de norma 1 es su conjugado, cuya demostración queda como tarea moral.

La tercera parte se sigue de la propiedad anterior. Al multiplicar todas las raíces de la unidad, podemos emparejar a cada raíz con su conjugado para obtener producto 1. Las únicas excepciones es cuando emparejamos a un complejo consigo mismo, es decir, para cuando \omega_k=\overline{\omega_k}, lo cual sucede sólo cuando \omega_k es real. Las únicas posibilidades son 1 ó -1. El 1 no tiene problema pues colabora con un factor 1. Si n es impar, -1 no es raíz n-ésima, así que no contribuye al producto. Si n es par sí. Esto muestra lo que queremos pues (-1)^{n+1} es 1 si n es impar y -1 si es par.

\square

Para un entero positivo n, llamemos (U_n,\cdot) al conjunto de raíces n-ésimas de la unidad equipadas con el producto complejo.

Teorema. Para cada entero positivo n, se tiene que (U_n,\cdot) es un grupo y es isomorfo a (\mathbb{Z}_n,+).

Demostración. El producto de cualesquiera dos raíces n-ésimas es también una raíz n-ésima. Por el teorema anterior, los inversos multiplicativos de las raíces n-ésimas también son raíces n-ésimas. Esto basta para mostrar que se forma un grupo.

Para la segunda parte, notamos que ambos grupos son el grupo cíclico de n elementos. Una correspondencia entre ellos está dada por mandar [1]_n a cualquier raíz primitiva.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra las raíces cúbicas de 8-8i y dibújalas en el plano complejo.
  • Verifica que las soluciones obtenidas en el teorema de raíces n-ésimas en efecto son soluciones.
  • Muestra el teorema de las raíces n-ésimas de la unidad.
  • Prueba que si z es un complejo de norma 1, entonces su inverso es su conjugado.
  • Sea \omega una raíz n-ésima primitiva de la unidad. Muestra que w^k es una raíz primitiva si y sólo si n y k son primos relativos, es decir, \MCD{n,k}=1. Sugerencia: Usa lo que sabemos de soluciones a ecuaciones diofantinas lineales.
  • Encuentra de manera explícita la parte real y la parte imaginaria de todas las raíces quintas de la unidad.
    Sugerencia: La ecuación w^5-1=0 se puede factorizar como

        \[(w-1)(w^4+w^3+w^2+w+1)\]

    y w^4+w^3+w^2+w+1 se puede factorizar como

        \[\left(w^2+\frac{1+\sqrt{5}}{2}w+1\right)\left(w^2+\frac{1-\sqrt{5}}{2}w+1\right).\]

    Usa lo que sabemos de resolver ecuaciones cuadráticas cojmplejas.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.