Álgebra Lineal I: Problemas de producto de matrices y matrices invertibles

Por Julio Sampietro

Introducción

Esta sección consta de puros problemas para practicar los conceptos vistos en entradas previas. Las entradas anteriores correspondientes son la de producto de matrices y la de matrices invertibles.

Problemas resueltos

Problema. Encuentra todas las matrices $B\in M_3(\mathbb{C})$ que conmutan con la matriz

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 & 0\\
0 & 0 &2
\end{pmatrix}.
\end{align*}

Solución. Sea

\begin{align*}
B=\begin{pmatrix} a & b & c\\ d & e & f \\ g & h & i \end{pmatrix}\in M_3(\mathbb{C}).
\end{align*}

Calculamos usando la regla del producto:

\begin{align*}
AB=\begin{pmatrix}
a & b & c\\ 0 & 0 & 0\\ 2 g & 2h & 2i \end{pmatrix}
\end{align*}

y

\begin{align*}
BA= \begin{pmatrix} a & 0 & 2c\\ d & 0 & 2f\\ g & 0 & 2i\end{pmatrix}.
\end{align*}

Igualando ambas matrices obtenemos que $A$ y $B$ conmutan si y sólo si se satisfacen las condiciones

\begin{align*}
\begin{cases}
b=d=f=h=0\\
2c=c\\
2g=g\end{cases}.
\end{align*}

Las últimas dos condiciones son equivalentes a que $c=g=0$. Cualquier matriz que conmuta con $A$ satisface estas condiciones y conversamente (por nuestro cálculo) si satisface estas ecuaciones conmuta con $A$. Esto nos deja como parámetros libres a $a,e,i$, es decir $B$ puede ser cualquier matriz diagonal.

$\triangle$

Problema. Considerando las matrices

\begin{align*}
A=\begin{pmatrix} 1 & 1 & 1\\ 0& 4 &-1\\ 9& 6 & 0 \end{pmatrix}, \hspace{2mm} B= \begin{pmatrix} -1 & 1\\ 0 & -2 \\ 1 &0 \end{pmatrix},
\end{align*}

¿cuáles de los productos $A^2, AB, BA, B^2$ tienen sentido? Calcula los que si lo tienen.

Solución. Recordamos que los productos tienen sentido si el número de columnas de la matriz de la izquierda sea el mismo que el número de filas de la matriz de la derecha. Entonces no podemos realizar los productos $BA$ o $B^2$ pues esta condición no se cumple (por ejemplo, $B$ tiene $3$ columnas, $A$ tiene $2$ filas, y estos números difieren). Calculamos entonces usando la regla del producto:

\begin{align*}
A^2 = \begin{pmatrix}
10 & 11 & 0\\
-9 & 10 & -4\\
9 & 33 & 3\end{pmatrix}, \hspace{2mm} AB= \begin{pmatrix} 0 & -1\\ -1 & -8\\ -9 &-3\end{pmatrix}.
\end{align*}

$\triangle$

Problema. Considera la matriz \begin{align*}
A=\begin{pmatrix} 1 & 1& 0 \\ 0 & 1 &1\\ 0 &0 & 1 \end{pmatrix}
\end{align*}

  • Demuestra que $A$ satisface que $(A-I_3)^3=O_3$
  • Calcula $A^{n}$ para cualquier entero positivo $n$.

Solución.

  • Hacemos el cálculo directamente:
    \begin{align*}
    (A-I_3)^3&= \begin{pmatrix} 0 & 1 & 0\\0 & 0 &1\\ 0 & 0 &0 \end{pmatrix}^{2} \cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix} \\&= \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 &0 &0\end{pmatrix}\cdot \begin{pmatrix} 0 & 1 &0 \\ 0 & 0 & 1\\ 0 & 0 &0 \end{pmatrix}\\&=O_3. \end{align*}
  • Para este tipo de problemas, una estrategia que funciona es hacer casos pequeños para hacer una conjetura, y luego demostrarla por inducción. Probando para algunos valores de $n$ conjeturamos que
    \begin{align*}
    A^{n}=\begin{pmatrix} 1 & n & \frac{n(n-1)}{2}\\ 0 & 1 & n\\ 0 & 0 &1 \end{pmatrix}.
    \end{align*}
    Lo demostramos por inducción sobre $n$, dando por cierto el caso base con $n=1$.
    Hagamos ahora el paso inductivo. Para esto usamos que $1+\dots + (n-1)= \frac{n(n-1)}{2}$.
    Nuestra hipótesis de inducción nos dice entonces que para cierto $n$ se tiene que $A^{n}=\begin{pmatrix} 1 & n & 1+\dots +(n-1) \\ 0 & 1 & n\\ 0 & 0 & 1\end{pmatrix}$. Usando que $A^{n+1}=A^{n}\cdot A$ con nuestra hipótesis de inducción se sigue:
    \begin{align*}
    A^{n+1}= A^{n}\cdot A&= \begin{pmatrix} 1 & n & 1+\dots +(n-1)\\ 0 & 1 &n\\ 0 & 0 &1\end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\end{pmatrix}\\ &= \begin{pmatrix} 1 & 1+n & 1+\dots + (n-1)+n\\ 0 & 1 & n+1\\ 0 & 0 &1\end{pmatrix}.\end{align*}
    Luego el resultado es cierto para $n+1$ y así queda demostrado el resultado.

$\square$

El siguiente problema combina temas de números complejos y de matrices invertibles. Para que lo entiendas a profundidad, es útil recordar la teoría de raíces $n$-ésimas de la unidad. Puedes revisar esta entrada del blog. El ejemplo puede parecer un poco artificial. Sin embargo, las matrices que se definen en él tienen muchas aplicaciones, por ejemplo, en procesamiento de señales.

Problema. Sea $n>1$ un natural y sea

\begin{align*}
\zeta= e^{\frac{2\pi i}{n}}= \cos \left( \frac{2\pi}{n}\right)+i\sin \left( \frac{2\pi}{n}\right).
\end{align*}

Este número puede parecer muy feo, pero es simplemente la raíz $n$-ésima de la unidad de menor argumento.

Definimos la matriz de Fourier de orden $n$, denotada por $\mathcal{F}_n$ como la matriz tal que su $(j,k)-$ésima entrada es $\zeta^{(j-1)(k-1)}$ para $1\leq j,k\leq n$.

  • a) Sea $\overline{\mathcal{F}_n}$ la matriz cuya $(j,k)-$ésima entrada es el conjugado complejo de la $(j,k)-$ésima entrada de $\mathcal{F}_n$. Demuestra que
    \begin{align*}
    \mathcal{F}_n\cdot \overline{\mathcal{F}_n} = \overline{\mathcal{F}_n}\cdot \mathcal{F}_n= nI_n.
    \end{align*}
  • b) Deduce que $\mathcal{F}_n$ es invertible y calcule su inversa.

Solución.

  • a) Sean $1\leq j,k\leq n$. Usando la regla del producto, podemos encontrar la entrada $(j,k)$ como sigue:
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n} \right)_{jk} &= \sum_{l=1}^{n} \left(\mathcal{F}_n\right)_{jl} \cdot \left(\overline{\mathcal{F}_n}\right)_{lk}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)} \cdot \overline{\zeta^{(l-1)(k-1)}}\\
    &= \sum_{l=1}^{n} \zeta^{(j-1)(l-1)-(l-1)(k-1)},
    \end{align*}
    la última igualdad se debe a que $\overline{\zeta}= \zeta^{-1}$. Así
    \begin{align*}
    \left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}=\sum_{l=1}^{n}\zeta^{(l-1)(j-k)}=\sum_{l=0}^{n-1}\left( \zeta^{j-k}\right)^{l}.
    \end{align*}
    Y la suma de la derecha es la suma de una sucesión geométrica con razón $\zeta^{j-k}$. Si $j=k$, entonces $\zeta^{j-k}=1$, así que la suma es igual a $n$ ya que cada termino es $1$ y lo sumamos $n$ veces. Si $j\neq k$ entonces $\zeta^{j-k}\neq 1$ y usamos la fórmula para una suma geométrica:
    \begin{align*}
    \sum_{l=0}^{n-1} \left( \zeta^{j-k}\right)^{l}= \frac{1-\left(\zeta^{j-k}\right)^{n}}{1-\zeta^{j-k}}=\frac{1-(\zeta^{n})^{j-k}}{1-\zeta^{j-k}}=0.\end{align*}
    Usamos en la última igualdad que $\zeta^{n}=1$. Se sigue que $\left( \mathcal{F}_n \cdot \overline{\mathcal{F}_n}\right)_{jk}$ es $n$ si $j=k$ y $0$ de otra manera, es decir
    \begin{align*}
    \mathcal{F}_n\cdot\overline{\mathcal{F}_n}=n\cdot I_n.
    \end{align*}
    La igualdad simétrica $\overline{\mathcal{F}_n}\cdot \mathcal{F}_n=n \cdot I_n$ se prueba de la misma manera y omitimos los detalles.
  • b) Por el inciso anterior, sugerimos $\frac{1}{n} \overline{\mathcal{F}_n}$, y esta satisface

    \begin{align*}
    \mathcal{F}_n \cdot \frac{1}{n} \overline{\mathcal{F}_n} = \frac{1}{n} \cdot n I_n= I_n
    \end{align*}
    y la otra igualdad se verifica de la misma manera. Por lo tanto, $\mathcal{F}_n$ es invertible y su inversa es $\frac{1}{n} \overline{\mathcal{F}_n}$.

$\square$

Problema. Sean $A,B\in M_n(\mathbb{R})$ matrices tales que

\begin{align*}
A+B=I_n \hspace{5mm} A^2+B^2=O_n
\end{align*}

Demuestra que $A$ y $B$ son invertibles y que satisfacen

\begin{align*}
(A^{-1}+B^{-1})^{n}=2^{n} I_n
\end{align*}

Solución. Observamos que las propiedades dadas nos permiten calcular

\begin{align*}
A(I_n+B-A)&= (I_n-B) (I_n+B-A)\\&=I_n+B-A-B-B^2+BA\\
&= I_n -A-B^2+BA \\&=I_n+(B-I_n)A-B^2\\ &=I_n-A^2-B^2\\&= I_n.
\end{align*}

Es decir $A^{-1}=I_n+B-A$ (falta demostrar que con esta propuesta, también se cumple $A^{-1}A=I_n$, omitimos los cálculos). Similarmente $B^{-1}= I_n+A-B$ y por tanto $A^{-1}+B^{-1}= 2\cdot I_n$ y de esta igualdad se sigue la segunda parte del problema, pues

\begin{align*}
\left(A^{-1}+B^{-1}\right)^{n}= \left( 2\cdot I_n\right)^{n}=2^{n} \cdot I_n.\end{align*}

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

18 comentarios en “Álgebra Lineal I: Problemas de producto de matrices y matrices invertibles

  1. Andrés Eduardo Medrano Albarrán

    Hola Profesor, creo que cuando buscamos A^n, la matriz propuesta no funciona. Revise a de nuevo como se comportaban y no mostraban ese comportamiento en particular.
    Al analizar creo conjeturar este comportamiento:
    1 n a_{1,3}+(n-1)
    0 1 n
    0 0 1

    Donde a_{1,3} es la entrada a_{1,3} de la matriz anterior.

    También se me ocurrió esto en términos de n:
    1 n [(n(n-1)]/2
    0 1 n
    0 0 1

    Espero que pueda revisar esto

    Responder
  2. Adrián Bonilla

    Al momento de igualar las matrices (en el primer problema) tenemos que
    b=d=f=h=0
    2c=c
    2g=g

    ¿Faltaria añadir a = a asi como 2i = 2i?
    o en caso de no ser asi ¿Porqué?

    Responder
    1. Julio Sampietro Autor

      Las condiciones a=a y 2i=2i fueron omitidas porque no aportan información sobre la elección de a o de i: Sin importar quien sea a, a=a.

      Responder
    1. Julio Sampietro Autor

      No me queda claro en que parte ‘tomamos’ que sea igual a 1. En la parte que dice zeta^{n}=1 es porque zeta es una raíz de la unidad, y en la parte en la que si j=k entonces zeta^{j-k}=1 es porque x^0=1 para cualquier x. Espero que esto aclare la duda.

      Responder
    2. Leonardo Ignacio Martínez SandovalLeo

      Adicionalmente al comentario de Julio, te comento, Sahori, que en la sesión de hoy 30 de julio, Javier vio ese problema a detalle. Puedes encontrar la grabación en Moodle, en la actividad «Links a videosesiones». ¡Saludos!

      Responder
  3. Antonio Mayorquin

    Quería compartir una solución alterna al primer inciso del último problema de la página. No estaba seguro si en Moodle, pues en parte no quería que se perdiera, por lo cual la comparto aquí. Aquí va:
    Consideremos
    I = I * I = (A+B)(A+B) = A^2 + AB + BA + B^2 = AB + BA
    Donde al final usamos que A^2 + B^2 = 0. Por lo tanto
    AB + BA = I … eq(1)
    Por otro lado, Multiplicamos por A en el lado derecho de A + B = I y al despejar BA tenemos
    BA = A – A^2 …eq(2)
    Ya con esto se tiene la solución. Solamente juntamos ambas ecuaciones.
    AB + (A – A^2) = I => A( B + I – A) = I
    De aquí llegamos al mismo resultado que del Blog, con
    A^{-1} = I + B – A
    Que es lo que queríamos encontrar.

    Responder
    1. Leonardo Ignacio Martínez SandovalLeo

      Hola Antonio. Me parece una propuesta de solución muy buena, pues además motiva cómo se puede encontrar esa inversa. Te invito a también ponerla en Moodle, en el foro de dudas de la Unidad 1. Allá tienes la ventaja de que si encierras tus matemáticas entre símbolos de pesos, entonces se generan las ecuaciones, por ejemplo: $AB+BA=I_n$.

      Responder
    1. Leonardo Ignacio Martínez SandovalLeo

      Hola Erick. La razón por la cual llegas a esa contradicción es porque estás dividiendo entre g, pero no sabes si g es distinto de cero. De hecho, g debe ser cero, pues al restar g en ambos lados de 2g=g obtienes g=0.

      Responder
  4. Javier

    Hola profe tengo una duda no entiendo de donde sale el resultado de (A-I_3)^3 hice el producto de las matrices y me salen cosas distintas no entiendo como lo esta calculando gracias.

    Responder
    1. Leonardo Ignacio Martínez SandovalLeo

      Hola. Primero se hace A-I_3. Sus renglones son (0,1,0), (0,0,1) y (0,0,0). Luego, se está usando que X^3=X^2 X con X=A-I_3. Al elevar al cuadrado queda la matriz con renglones (0,0,1), (0,0,0) y (0,0,0). Finalmente se multiplica por X para obtener el resultado.

      Quizás tú lo estas haciendo así: (A-I_3)^3 = A^3 – 3A^2 + 3A + I_3. Esto también es correcto y dará el mismo resultado.

      Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.