Álgebra Lineal I: Determinantes de matrices y transformaciones lineales

Introducción

En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.

Determinantes de transformaciones lineales

Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.

Si tomamos un espacio vectorial V de dimensión finita n\geq 1 sobre un campo F, una transformación lineal T:V\to V y una forma n-lineal f:V^n\to F, se puede mostrar que la transformación

    \[T_f:V^n\to F\]

dada por

    \[T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))\]

también es una forma n-lineal. Además, se puede mostrar que si f es alternante, entonces T_f también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.

Teorema. Sea V un espacio vectorial de dimensión finita n\geq 1 sobre el campo F. Para cualquier transformación lineal T:V\to V existe un único escalar \det T en F tal que

    \[f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)\]

para cualquier forma n-lineal alternante f:V^n\to F y cualquier elección x_1,\ldots,x_n de vectores en V.

Demostración. Fijemos una base B=(b_1,\ldots,b_n) cualquiera de V. Llamemos g a la forma n-lineal alternante \det_{(b_1,\ldots,b_n)}. Por la discusión de arriba, la asignación T_g:V^n\to F dada por

    \[(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))\]

es una forma n-lineal y alternante.

Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que

    \[T_g = T_g(b_1,\ldots,b_n) \cdot g.\]

Afirmamos que \det T:= T_g(b_1,\ldots, b_n) es el escalar que estamos buscando.

En efecto, para cualquier otra forma n-lineal alternante f, tenemos por el mismo teorema que

    \[f=f(b_1,\ldots,b_n) \cdot g.\]

Usando la linealidad de T y la igualdad anterior, se tiene que

    \begin{align*}T_f &= f(b_1,\ldots,b_n)\cdot T_g\\&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\&= \det T \cdot f.\end{align*}

Con esto se prueba que \det T funciona para cualquier forma lineal f. La unicidad sale eligiendo (x_1,\ldots,x_n)=(b_1,\ldots,b_n) y f=g en el enunciado del teorema, pues esto forza a que

    \[\det T = g(T(b_1),\ldots,T(b_n)).\]

\square

Ahora sí, estamos listos para definir el determinante de una transformación lineal.

Definición. El escalar \det T del teorema anterior es el determinante de la transformación lineal T.

Para obtener el valor de \det T, podemos entonces simplemente fijar una base B=(b_1,\ldots,b_n) y el determinante estará dado por

    \[\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).\]

Como el teorema también prueba unicidad, sin importar que base B elijamos este número siempre será el mismo.

Ejemplo. Vamos a encontrar el determinante de la transformación lineal T:\mathbb{R}^3 \to \mathbb{R}^3 dada por

    \[T(x,y,z)=(2z,2y,2x).\]

Para ello, usaremos la base canónica de \mathbb{R}^3. Tenemos que

    \begin{align*}T(1,0,0)&=(0,0,2)=2e_3\\T(0,1,0)&=(0,2,0)=2e_2\\T(0,0,1)&=(2,0,0)=2e_1.\end{align*}

De acuerdo al teorema anterior, podemos encontrar al determinante de T como

    \[\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).\]

Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas 1 y 3 su signo cambia en -1. Usando la 3-linealidad en cada entrada, podemos sacar un factor 2 de cada una. Así, tenemos:

    \begin{align*}\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\&=-8.\end{align*}

Concluimos entonces que el determinante de T es -8.

\square

Ejemplo. Vamos ahora a encontrar el determinante de la transformación T:\mathbb{R}_n[x]\to \mathbb{R}_n[x] que deriva polinomios, es decir, tal que T(p)=p'. Tomemos q_0=1,q_1=x,\ldots,q_n=x^n la base canónica de \mathbb{R}_n[x].

Notemos que, T(1)=0, de modo que los vectores T(1),\ldots,T(x^n) son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que

    \[\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.\]

Concluimos entonces que \det T = 0.

\square

Determinantes de matrices

La expresión

    \[\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))\]

para una transformación lineal T también nos permite poner al determinante en términos de las entradas de la matriz de T con respecto a la base B. Recordemos que dicha matriz A_T=[a_{ij}] tiene en la columna i las coordenadas de b_i en la base B. En otras palabras, para cada i se cumple que

    \[T(v_i)=\sum_{j=1}^n a_{ji}v_i.\]

Usando esta notación, obtenemos que

    \[\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},\]

de manera que podemos expresar a \det T en términos únicamente de su matriz en la base B.

Esto nos motiva a definir el determinante de una matriz en general.

Definición. Para una matriz A en M_n(F) de entradas A=[a_{ij}], el determinante de A es

    \[\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.\]

A \det A también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

    \begin{align*}\det A = \begin{vmatrix}a_{11} & a_{12} & \ldots & a_{1n}\\a_{21} & a_{22} & \ldots & a_{2n}\\\vdots & & \ddots & \vdots\\a_{n1} & a_{n2} & \ldots & a_{nn}.\end{vmatrix}\end{align*}

Ejemplo. Si queremos calcular el determinante de una matriz en M_2(F), digamos

    \[A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},\]

debemos considerar dos permutaciones: la identidad y la transposición (1,2).

La identidad tiene signo 1 y le corresponde el sumando ad. La transposición tiene signo -1 y le corresponde el sumando bc. Así,

    \[\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.\]

\square

Retomando la discusión antes de la definición, tenemos entonces que \det T = \det A_T, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de T depende de la base elegida, pero como vimos, el determinante de T no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.

Teorema. Sean A y P matrices en M_n(F) con P invertible. El determinante de A y el de P^{-1}AP son iguales.

Determinantes de matrices triangulares

Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.

Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.

Solución. En una matriz triangular superior tenemos que a_{ij}=0 si i>j. Vamos a estudiar la expresión

    \[\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.\]

Si una permutación \sigma no es la identidad, entonces hay un entero i que no deja fijo, digamos \sigma(i)\neq i. Tomemos a i como el mayor entero que \sigma no deja fijo. Notemos que \sigma(i) tampoco queda fijo por \sigma pues \sigma(\sigma(i))=\sigma(i) implica \sigma(i)=i, ya que \sigma es biyectiva, y estamos suponiendo \sigma(i)\neq i. Por la maximalidad de i, concluimos que \sigma(i)<i.Entonces el sumando correspondiente a \sigma es 0 pues tiene como factor a la entrada a_{i\sigma(i)}=0.

En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es 1. De esta forma,

    \begin{align*}\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\&=a_{11}\cdot \ldots \cdot a_{nn}.\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que la transformación T_f definida en la entrada es n-lineal y alternante.
  • Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal T:\mathbb{R}^n \to \mathbb{R}^n dada por

        \[T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).\]

  • Calcula por definición el determinante de las matrices

        \[\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}\]

    y

        \[\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.\]

  • Calcula por definición el determinante de la matriz

        \[\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}\]

    y compáralo con el de la matriz de 3\times 3 del inciso anterior. ¿Qué notas?
  • Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.