Álgebra Lineal I: Bases ortogonales

Introducción

Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial V con producto interior, entonces podemos definir varias nociones geométricas en V, como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.

Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.

En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre \mathbb{R} con un producto interior \langle \cdot,\cdot \rangle.

Conjuntos ortogonales y ortonormales

Comenzamos con la siguiente definición. Recuerda que V es un espacio vectorial sobre \mathbb{R} con producto interior, así que induce una norma \Vert \cdot \Vert.

Definición. Sea S un conjunto de vectores en V. Decimos que S es

  • Ortogonal si cualquier par de vectores distintos de S es ortogonal, es decir, si para todo v,w en S, con v\neq w se tiene que

        \[\langle v, w \rangle = 0.\]

  • Ortonormal si es ortogonal, y además todo vector de S tiene norma 1.

En otras palabras, S es ortonormal si para todo v en S se tiene \langle v, v\rangle =1 y para v y w en S distintos se tiene \langle v, w\rangle =0.

Ejemplo. Si tomamos a \mathbb{R}^n con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, e_i\cdot e_i = 1 y para i\neq j se tiene e_i\cdot e_j = 0.

Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en \mathbb{R}^2 es el conjunto que sólo tiene al vector \left(\frac{3}{5},\frac{4}{5}\right), pues este es un vector de norma 1.

Los vectores (1,1,0), (1,-1,0) y (0,0,1) forman otro conjunto ortogonal en \mathbb{R}^3, pues en efecto

    \begin{align*}(1,1,0)\cdot (1,-1,0)&=1-1=0\\(1,-1,0)\cdot (0,0,1)&=0\\(0,0,1)\cdot (1,1,0)&=0.\end{align*}

Sin embargo, este no es un conjunto ortonormal, pues la norma de (1,1,0) es \sqrt{2}\neq 1. Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales \left(1/\sqrt{2},1/\sqrt{2},0\right), \left(1/\sqrt{2},-1/\sqrt{2},0\right) y (0,0,1).

\square

Propiedades de conjuntos ortogonales y ortonormales

Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si S es un conjunto de vectores distintos de 0, entonces

    \[S'=\left\{\frac{v}{\Vert v \Vert}: v\in S\right\}\]

es un conjunto ortonormal.

Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.

Proposición. Si S es un conjunto ortogonal de vectores no nulos, entonces los elementos de V son linealmente independientes.

Demostración. Tomemos v_1,\ldots,v_n elementos de S y supongamos que existen \alpha_1,\ldots,\alpha_n escalares tales que

    \[v:=\sum_{i=1}^n \alpha_i v_i =0.\]

Tomemos un índice j en 1,\ldots,n y hagamos el producto interior \langle v, v_j\rangle. Por un lado, como v=0, este produto es 0. Por otro lado, por linealidad es

    \[\sum_{i=1}^n \alpha_i \langle v_i,v_j\rangle.\]

Cuando i\neq j, el sumando correspondiente es igual a 0. De este modo, el único sumando no cero es cuando i=j, el cual es \alpha_j \langle v_j,v_j\rangle. De estos argumentos, deducimos que

    \[\alpha_j\langle v_j,v_j\rangle =0.\]

Como los vectores son no nulos, se tiene que \langle v_j,v_j\rangle \neq 0. Así, \alpha_j=0 para todo j=1,\ldots,n, lo cual muestra que los vectores son linealmente independientes.

\square

Como cada elemento de un conjunto ortonormal tiene norma 1, entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.

Corolario. En un espacio Euclideano de dimensión d, los conjuntos ortogonales sin vectores nulos tienen a lo más d elementos.

Bases ortogonales y ortonormales

Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.

Definición. Sea S un conjunto de vectores en V. Decimos que S es

  • Una base ortogonal si S es una base de V y es un conjunto ortogonal.
  • Una base ortonormal si S una base de V y es un conjunto ortonormal.

Ejemplo. En \mathbb{R}^n la base canónica es una base ortonormal.

En \mathbb{R}^2 el conjunto S=\{(2,3),(9,-6)\} es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, S es una base ortogonal.

Sin embargo, S no es una base ortonormal pues el primero de ellos tiene norma \sqrt{2^2+3^2}=\sqrt{13}. Si quisiéramos convertir a S en una base ortonormal, podemos normalizar a cada uno de sus elementos.

\square

En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.

Corolario. En un espacio Euclideano de dimensión n, un conjunto ortonormal de n vectores es una base ortonormal.

La importancia de las bases ortogonales yace en que dada una base ortonormal B y un vector v, podemos encontrar varias propiedades de v en términos de B fácilmente. Por ejemplo, veremos más adelante que:

  • Las coordenadas de v con respecto a la base B son sencillas.
  • Hay una fórmula simple para la norma de v en términos de sus coordenadas en la base B.
  • Si B es una base de un subespacio W de V, entonces es fácil encontrar la distancia de v a W.

Mejor aún, las bases ortonormales siempre existen.

Teorema. Todo espacio Euclideano tiene una base ortonormal.

Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.

Ejemplo de bases ortogonales en polinomios

Ejemplo. Tomemos \mathbb{R}_n[x] el espacio de polinomios de grado a lo más n con coeficientes reales. Además, tomemos números reales distintos x_0,\ldots,x_n. A partir de estos reales podemos definir la operación

    \[\langle P, Q \rangle = \sum_{j=0}^n P(x_j)Q(x_j),\]

la cual es claramente bilineal y simétrica.

Tenemos que \langle P,P\rangle es una suma de cuadrados, y por lo tanto es no negativa. Además, si \langle P, P\rangle =0, es porque

    \[\sum_{j=0}^n P(x_j)^2=0,\]

y como estamos trabajando en \mathbb{R} esto implica que cada sumando debe ser cero. Pero las igualdades

    \[P(x_0)=\ldots=P(x_n)=0\]

dicen que los n+1 reales distintos x_i son raíces de P, y como P es de grado a lo más n, tenemos que P es el polinomio 0. En resumen, \langle \cdot, \cdot \rangle es un producto interior en \mathbb{R}_n[x]. Vamos a dar una base ortogonal con respecto a este producto interior.

Para i=0,\ldots,n, consideremos los polinomios

    \[L_i(x)=\prod_{0\leq k \leq n, k\neq i} \frac{x-x_k}{x_i-x_k}.\]

Observa que L_j(x_j)=1 y si j\neq i, tenemos L_i(x_j)=0. Afirmamos que

    \[B=\{L_j:j=0,\ldots,n+1\}\]

es una base ortonormal de \mathbb{R}_n[x] con el producto interior que definimos. Como consiste de n+1 polinomios y \dim(\mathbb{R}_n[x])=n+1, basta con que veamos que es un conjunto ortonormal.

Primero, notemos que

    \begin{align*}\langle L_i,L_i \rangle = \sum_{j=0}^n L_i(x_j)^2 = L_i(x_i)^2=1,\end{align*}

de modo que cada L_i tiene norma 1.

Luego, notemos que si i\neq j, entonces L_i(x_k)L_j(x_k)=0 pues x_k no puede ser simultáneamente x_i y x_j. De este modo,

    \begin{align*}\langle L_i,L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k)=0.\end{align*}

Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que B es base ortonormal.

\square

Ejemplo de conjuntos ortogonales en funciones periódicas

Ejemplo. Consideremos V el conjunto de funciones f:\mathbb{R}\to \mathbb{R} continuas y periódicas de periodo 2\pi. Definimos

    \[\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx.\]

Se puede mostrar que \langle \cdot, \cdot \rangle así definido es un producto interior en V.

Para cada entero positivo n, definimos

    \begin{align*}C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\ S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.\end{align*}

Además, definimos C_0(x)=\frac{1}{\sqrt{2\pi}}. Afirmamos que

    \[\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}\]

es un conjunto ortonormal de vectores. Mostremos esto.

Para empezar, notamos que

    \[\Vert C_0\Vert = \int_{-\pi}^{\pi} \frac{1}{2\pi}\, dx =1.\]

Luego, tenemos que para n\geq 1 que

    \begin{align*}\Vert C_n\Vert &= \int_{-\pi}^\pi \frac{1}{\pi} \cos^2(nx)\, dx\\&= \int_{-\pi}^\pi \frac{1+\cos(2nx)}{2\pi}\, dx\\&= 1,\end{align*}

ya que para todo entero m\neq 0 se tiene que

    \[\int_{-\pi}^\pi \cos(mx) \, dx=0.\]

De manera similar, usando la identidad

    \[\sin^2(nx)=\frac{1-\cos(nx)}{2},\]

se puede ver que la norma de S_n es 1.

Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos n\geq 1, el resultado para \langle C_0,C_n\rangle ó \langle C_0,S_n\rangle se deduce de que

    \[\int_{-\pi}^\pi \cos(mx)\, dx=\int_{-\pi}^\pi \sin(mx)\, dx=0\]

para todo entero m\neq 0.

Si tomamos dos C_i‘s distintos, dos S_i's distintos o un C_i y un S_i, el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Encuentra un conjunto ortogonal de vectores en \mathbb{R}^4 tal que ninguna de las entradas de ninguno de sus vectores sea igual a 0.
  • Escribe las demostraciones de los corolarios enunciados en esta entrada.
  • Muestra que \langle \cdot, \cdot \rangle definido en el ejemplo de funciones periódicas es un producto interior.
  • Termina de mostrar que la familia \mathcal{F} del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.